Christopher DiPalma, Ningfei Wang, Takami Sato, and Qi Alfred Chen (UC Irvine)

Robust perception is crucial for autonomous vehicle security. In this work, we design a practical adversarial patch attack against camera-based obstacle detection. We identify that the back of a box truck is an effective attack vector. We also improve attack robustness by considering a variety of input frames associated with the attack scenario. This demo includes videos that show our attack can cause end-to-end consequences on a representative autonomous driving system in a simulator.

View More Papers

Cross-National Study on Phishing Resilience

Shakthidhar Reddy Gopavaram (Indiana University), Jayati Dev (Indiana University), Marthie Grobler (CSIRO’s Data61), DongInn Kim (Indiana University), Sanchari Das (University of Denver), L. Jean Camp (Indiana University)

Read More

Hashomer – Privacy-Preserving Bluetooth Based Contact Tracing Scheme for...

Benny Pinkas (Bar-Ilan University); Eyal Ronen (Tel Aviv University)

Read More

Demo #1: Security of Multi-Sensor Fusion based Perception in...

Yulong Cao (University of Michigan), Ningfei Wang (UC, Irvine), Chaowei Xiao (Arizona State University), Dawei Yang (University of Michigan), Jin Fang (Baidu Research), Ruigang Yang (University of Michigan), Qi Alfred Chen (UC, Irvine), Mingyan Liu (University of Michigan) and Bo Li (University of Illinois at Urbana-Champaign)

Read More

Bringing Balance to the Force: Dynamic Analysis of the...

Abdallah Dawoud (CISPA Helmholtz Center for Information Security), Sven Bugiel (CISPA Helmholtz Center for Information Security)

Read More