Sayak Saha Roy, Unique Karanjit, Shirin Nilizadeh (The University of Texas at Arlington)

Twitter maintains a blackbox approach for detecting malicious URLs shared on its platform. In this study, we evaluate the efficiency of their detection mechanism against newer phishing and drive-by download threats posted on the website over three different time periods of the year. Our findings indicate that several threats remained undetected by Twitter, with the majority of them originating from nine different free website hosting services. These URLs targeted 19 popular organizations and also distributed malicious files from 9 different threat categories. Moreover, the malicious websites hosted under these services were also less likely to get detected by URL scanning tools than other similar threats hosted elsewhere, and were accessible on their respective domains for a much longer duration. We believe that the aforementioned features, combined with the ease of access (drag and drop website creating interface, up-to-date SSL certification, reputed domain, etc.) provides attackers a fast and convenient way to create malicious attacks using these services. On the other hand, we also observed that the majority of the URLs which were actually detected by Twitter remained active on the platform throughout our study, allowing them to be easily distributed across the platform. Also, several benign websites in our dataset were detected by Twitter as being malicious. We hypothesize that this is caused due to a blocklisting procedure used by Twitter, which detects all URLs originating from certain domains, irrespective of their content. Thus, our results identify a family of potent threats, which are distributed freely on Twitter, and are also not detected by the majority of URL scanning tools, or even the services which host them, thus making the need for a more thorough URL blocking approach from Twitter’s end more apparent.

View More Papers

SpecTaint: Speculative Taint Analysis for Discovering Spectre Gadgets

Zhenxiao Qi (UC Riverside), Qian Feng (Baidu USA), Yueqiang Cheng (NIO Security Research), Mengjia Yan (MIT), Peng Li (ByteDance), Heng Yin (UC Riverside), Tao Wei (Ant Group)

Read More

POP and PUSH: Demystifying and Defending against (Mach) Port-oriented...

Min Zheng (Orion Security Lab, Alibaba Group), Xiaolong Bai (Orion Security Lab, Alibaba Group), Yajin Zhou (Zhejiang University), Chao Zhang (Institute for Network Science and Cyberspace, Tsinghua University), Fuping Qu (Orion Security Lab, Alibaba Group)

Read More

Can Public IP Blocklists Explain Internet Radiation?

Simone Cossaro (University of Trieste), Damiano Ravalico (University of Trieste), Rodolfo Vieira Valentim (University of Turin), Martino Trevisan (University of Trieste), Idilio Drago (University of Turin)

Read More

Practical Blind Membership Inference Attack via Differential Comparisons

Bo Hui (The Johns Hopkins University), Yuchen Yang (The Johns Hopkins University), Haolin Yuan (The Johns Hopkins University), Philippe Burlina (The Johns Hopkins University Applied Physics Laboratory), Neil Zhenqiang Gong (Duke University), Yinzhi Cao (The Johns Hopkins University)

Read More