Mohd Sabra (University of Texas at San Antonio), Anindya Maiti (University of Oklahoma), Murtuza Jadliwala (University of Texas at San Antonio)

Due to recent world events, video calls have become the new norm for both personal and professional remote communication. However, if a participant in a video call is not careful, he/she can reveal his/her private information to others in the call. In this paper, we design and evaluate an attack framework to infer one type of such private information from the video stream of a call -- keystrokes, i.e., text typed during the call. We evaluate our video-based keystroke inference framework using different experimental settings, such as different webcams, video resolutions, keyboards, clothing, and backgrounds. Our high keystroke inference accuracies under commonly occurring experimental settings highlight the need for awareness and countermeasures against such attacks. Consequently, we also propose and evaluate effective mitigation techniques that can automatically protect users when they type during a video call.

View More Papers

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben...

Read More

Raising Trust in the Food Supply Chain

Alexander Krumpholz, Marthie Grobler, Raj Gaire, Claire Mason, Shanae Burns (CSIRO Data61)

Read More

Evading Voltage-Based Intrusion Detection on Automotive CAN

Rohit Bhatia (Purdue University), Vireshwar Kumar (Indian Institute of Technology Delhi), Khaled Serag (Purdue University), Z. Berkay Celik (Purdue University),...

Read More

Forward and Backward Private Conjunctive Searchable Symmetric Encryption

Sikhar Patranabis (ETH Zurich), Debdeep Mukhopadhyay (IIT Kharagpur)

Read More