Elijah Bouma-Sims, Bradley Reaves (North Carolina State University)

YouTube has become the second most popular website according to Alexa, and it represents an enticing platform for scammers to attract victims. Because of the computational difficulty of classifying multimedia, identifying scams on YouTube is more difficult than text-based media. As a consequence, the research community to-date has provided little insight into the prevalence, lifetime, and operational patterns of scammers on YouTube. In this short paper, we present a preliminary exploration of scam videos on YouTube. We begin by identifying 74 search queries likely to lead to scam videos based on the authors’ experience seeing scams during routine browsing. We then manually review and characterize the results to identify 668 scams in 3,700 videos. In a detailed analysis of our classifications and metadata, we find that these scam videos have a median lifetime of nearly nine months, and many rely on external websites for monetization. We also explore the potential of detecting scams from metadata alone, finding that metadata does not have enough predictive power to distinguish scams from legitimate videos. Our work demonstrates that scams are a real problem for YouTube users, motivating future work on this topic.

View More Papers

UIScope: Accurate, Instrumentation-free, and Visible Attack Investigation for GUI...

Runqing Yang (Zhejiang University), Shiqing Ma (Rutgers University), Haitao Xu (Arizona State University), Xiangyu Zhang (Purdue University), Yan Chen (Northwestern University)

Read More

POSEIDON: Privacy-Preserving Federated Neural Network Learning

Sinem Sav (EPFL), Apostolos Pyrgelis (EPFL), Juan Ramón Troncoso-Pastoriza (EPFL), David Froelicher (EPFL), Jean-Philippe Bossuat (EPFL), Joao Sa Sousa (EPFL), Jean-Pierre Hubaux (EPFL)

Read More

WeepingCAN: A Stealthy CAN Bus-off Attack

Gedare Bloom (University of Colorado Colorado Springs) Best Paper Award Winner ($300 cash prize)!

Read More

A Few-Shot Practical Behavioral Biometrics Model for Login Authentication...

J. Solano, L. Tengana, A. Castelblanco, E. Rivera, C. Lopez, M. Ochoa

Read More