Amit Klein (Bar Ilan University)

We analyzed the generation of protocol header fields in the implementations of multiple TCP/IP network stacks and found new ways to leak information about global protocol states. We then demonstrated new covert channels by remotely observing and modifying the system's global state via these protocol fields. Unlike earlier works, our research focuses on hosts that reside in firewalled networks (including source address validation – SAV), which is a very common scenario nowadays. Our attacks are designed to be non-disruptive – in the exfiltration scenario, this makes the attacks stealthier and thus extends their longevity, and in case of host alias resolution and similar techniques – this ensures the techniques are ethical. We focused on ICMP, which is commonly served by firewalls, and on UDP, which is forecasted to take a more prominent share of the Internet traffic with the advent of HTTP/3 and QUIC, though we report results for TCP as well.

The information leakage scenarios we discovered enable the construction of practical covert channels which directly pierce firewalls, or indirectly establish communication via hosts in firewalled networks that also employ SAV. We describe and test
three novel attacks in this context: exfiltration via the firewall itself, exfiltration via a DMZ host, and exfiltration via co-resident
containers. These are three generic, new use cases for covert channels that work around firewalling and enable devices that
are not allowed direct communication with the Internet, to still exfiltrate data out of the network. In other words, we exfiltrate
data from isolated networks to the Internet. We also explain how to mount known attacks such as host alias resolution, de-NATting
and container co-residence detection, using the new information leakage techniques.

View More Papers

Fuzzing Configurations of Program Options

Zenong Zhang (University of Texas at Dallas), George Klees (University of Maryland), Eric Wang (Poolesville High School), Michael Hicks (University of Maryland), Shiyi Wei (University of Texas at Dallas)

Read More

Physical Layer Data Manipulation Attacks on the CAN Bus

Abdullah Zubair Mohammed (Virginia Tech), Yanmao Man (University of Arizona), Ryan Gerdes (Virginia Tech), Ming Li (University of Arizona) and Z. Berkay Celik (Purdue University)

Read More

P4DDPI: Securing P4-Programmable Data Plane Networks via DNS Deep...

Ali AlSabeh (University of South Carolina), Elie Kfoury (University of South Carolina), Jorge Crichigno (University of South Carolina) and Elias Bou-Harb (University of Texas at San Antonio)

Read More

What You See is Not What the Network Infers:...

Yijun Yang (The Chinese University of Hong Kong), Ruiyuan Gao (The Chinese University of Hong Kong), Yu Li (The Chinese University of Hong Kong), Qiuxia Lai (Communication University of China), Qiang Xu (The Chinese University of Hong Kong)

Read More