Amit Klein (Bar Ilan University)

We analyzed the generation of protocol header fields in the implementations of multiple TCP/IP network stacks and found new ways to leak information about global protocol states. We then demonstrated new covert channels by remotely observing and modifying the system's global state via these protocol fields. Unlike earlier works, our research focuses on hosts that reside in firewalled networks (including source address validation – SAV), which is a very common scenario nowadays. Our attacks are designed to be non-disruptive – in the exfiltration scenario, this makes the attacks stealthier and thus extends their longevity, and in case of host alias resolution and similar techniques – this ensures the techniques are ethical. We focused on ICMP, which is commonly served by firewalls, and on UDP, which is forecasted to take a more prominent share of the Internet traffic with the advent of HTTP/3 and QUIC, though we report results for TCP as well.

The information leakage scenarios we discovered enable the construction of practical covert channels which directly pierce firewalls, or indirectly establish communication via hosts in firewalled networks that also employ SAV. We describe and test
three novel attacks in this context: exfiltration via the firewall itself, exfiltration via a DMZ host, and exfiltration via co-resident
containers. These are three generic, new use cases for covert channels that work around firewalling and enable devices that
are not allowed direct communication with the Internet, to still exfiltrate data out of the network. In other words, we exfiltrate
data from isolated networks to the Internet. We also explain how to mount known attacks such as host alias resolution, de-NATting
and container co-residence detection, using the new information leakage techniques.

View More Papers

Characterizing the Adoption of Security.txt Files and their Applications...

William Findlay (Carleton University) and AbdelRahman Abdou (Carleton University)

Read More

EqualNet: A Secure and Practical Defense for Long-term Network...

Jinwoo Kim (KAIST), Eduard Marin (Telefonica Research (Spain)), Mauro Conti (University of Padua), Seungwon Shin (KAIST)

Read More

GPSKey: GPS based Secret Key Establishment for Intra-Vehicle Environment

Edwin Yang (University of Oklahoma) and Song Fang (University of Oklahoma)

Read More

DRIVETRUTH: Automated Autonomous Driving Dataset Generation for Security Applications

Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

Read More