Zhengxiong Li (University at Buffalo, SUNY), Baicheng Chen (University at Buffalo), Xingyu Chen (University at Buffalo), Huining Li (SUNY University at Buffalo), Chenhan Xu (University at Buffalo, SUNY), Feng Lin (Zhejiang University), Chris Xiaoxuan Lu (University of Edinburgh), Kui Ren (Zhejiang University), Wenyao Xu (SUNY Buffalo)

Covert channels are a method of communication that is used to exfiltrate information from computing devices and break the security policy of computer systems. Any shared resource can be potentially leveraged as a covert channel, and conventional wisdom of cyber-security believes that air-gapped computing devices, disconnected from the Internet, are highly secured. Recent studies show that advanced covert channel attacks using acoustic, thermal, and electromagnetic effects can only work under a limited proximity constraint (e.g., within 2 meters). In this work, we present SpiralSpy, a new covert channel to attack air-gapped computing devices through millimeter-wave (mmWave) sensing technologies. SpiralSpy can be stealthily launched and circumvent strongly isolated computing devices from a practical distance (up to 8 meters). Specifically, we demonstrate that ordinal cooling fans can be leveraged for covert channel attacks. A malicious software inside air-gapped computing devices can saliently encode confidential data into the fan control signals, and modulated status on fan motions can be remotely decoded by a commodity mmWave sensor. SpiralSpy can be adopted on multiple-fan systems and enable a scalable capacity for multi-channel and high-speed information transfer. We evaluate SpiralSpy with 71 computing devices with cooling fans. Experimental results demonstrate that SpiralSpy can achieve up to 6 bps that is 6-24X faster than existing covert channels on air-gapped computing devices. We evaluate the usability and robustness of SpiralSpy under different real-world scenarios. Moreover, we conduct in-depth analysis and discussion on countermeasures for SpiralSpy-based covert channel attacks to improve computer and information security.

View More Papers

MobFuzz: Adaptive Multi-objective Optimization in Gray-box Fuzzing

Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

Euler: Detecting Network Lateral Movement via Scalable Temporal Graph...

Isaiah J. King (The George Washington University), H. Howie Huang (The George Washington University)

Read More

Generating Test Suites for GPU Instruction Sets through Mutation...

Shoham Shitrit(University of Rochester) and Sreepathi Pai (University of Rochester)

Read More

Demo #8: Identifying Drones Based on Visual Tokens

Ben Nassi (Ben-Gurion University of the Negev), Elad Feldman (Ben-Gurion University of the Negev), Aviel Levy (Ben-Gurion University of the Negev), Yaron Pirutin (Ben-Gurion University of the Negev), Asaf Shabtai (Ben-Gurion University of the Negev), Ryusuke Masuoka (Fujitsu System Integration Laboratories) and Yuval Elovici (Ben-Gurion University of the Negev)

Read More