Barak Davidovich (Ben-Gurion University of the Negev), Ben Nassi (Ben-Gurion University of the Negev) and Yuval Elovici (Ben-Gurion University of the Negev)

In this study, we propose an innovative method for the real-time detection of GPS spoofing attacks targeting drones, based on the video stream captured by a drone’s camera. The proposed method collects frames from the video stream and their location (GPS); by calculating the correlation between each frame, our method can detect a GPS spoofing on a drone. We first analyze the performance of the suggested method in a controlled environment by conducting experiments on a flight simulator that we developed. Then, we analyze its performance in the real world using a DJI drone. Our method can provide different levels of security against GPS spoofing attacks, depending on the detection interval required; for example, it can provide a high level of security to a drone flying at an altitude of 50-100 meters over an urban area at an average speed of 4 km/h in conditions of low ambient light; in this scenario, the proposed method can provide a level of security that detects any GPS spoofing attack in which the spoofed location is a distance of 1-4 meters (an average of 2.5 meters) from the real location.

View More Papers

Hiding My Real Self! Protecting Intellectual Property in Additive...

Sizhuang Liang (Georgia Institute of Technology), Saman Zonouz (Rutgers University), Raheem Beyah (Georgia Institute of Technology)

Read More

CANCloak: Deceiving Two ECUs with One Frame

Li Yue, Zheming Li, Tingting Yin, and Chao Zhang (Tsinghua University)

Read More

ProvTalk: Towards Interpretable Multi-level Provenance Analysis in Networking Functions...

Azadeh Tabiban (CIISE, Concordia University, Montreal, QC, Canada), Heyang Zhao (CIISE, Concordia University, Montreal, QC, Canada), Yosr Jarraya (Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada), Makan Pourzandi (Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada), Mengyuan Zhang (Department of Computing, The Hong Kong Polytechnic University, China), Lingyu Wang (CIISE, Concordia University, Montreal, QC, Canada)

Read More

EqualNet: A Secure and Practical Defense for Long-term Network...

Jinwoo Kim (KAIST), Eduard Marin (Telefonica Research (Spain)), Mauro Conti (University of Padua), Seungwon Shin (KAIST)

Read More