Omar Abusabha (Sungkyunkwan university), Jiyong Uhm (Sungkyunkwan University), Tamer Abuhmed (Sungkyunkwan university), Hyungjoon Koo (Sungkyunkwan University)

A function inlining optimization is a widely used transformation in modern compilers, which replaces a call site with the callee’s body in need. While this transformation improves performance, it significantly impacts static features such as machine instructions and control flow graphs, which are crucial to binary analysis. Yet, despite its broad impact, the security impact of function inlining remains underexplored to date. In this paper, we present the first comprehensive study of function inlining through the lens of machine learning-based binary analysis. To this end, we dissect the inlining decision pipeline within the LLVM’s cost model and explore the combinations of the compiler options that aggressively promote the function inlining ratio beyond standard optimization levels, which we term extreme inlining. We focus on five ML-assisted binary analysis tasks for security, using 20 unique models to systematically evaluate their robustness under extreme inlining scenarios. Our extensive experiments reveal several significant findings: i) function inlining, though a benign transformation in intent, can (in)directly affect ML model behaviors, being potentially exploited by evading discriminative or generative ML models; ii) ML models relying on static features can be highly sensitive to inlining; iii) subtle compiler settings can be leveraged to deliberately craft evasive binary variants; and iv) inlining ratios vary substantially across applications and build configurations, undermining assumptions of consistency in training and evaluation of ML models.

View More Papers

PIRANHAS: PrIvacy-Preserving Remote Attestation in Non-Hierarchical Asynchronous Swarms

Jonas Hofmann (Technische Universität Darmstadt), Philipp-Florens Lehwalder (Technische Universität Darmstadt), Shahriar Ebrahimi (Alan Turing Institute), Parisa Hassanizadeh (IPPT PAN / University of Warwick), Sebastian Faust (Technische Universität Darmstadt)

Read More

Rethinking Fake Speech Detection: A Generalized Framework Leveraging Spectrogram...

Zihao Liu (Iowa State University), Aobo Chen (Iowa State University), Yan Zhang (Iowa State University), Wensheng Zhang (Iowa State University), Chenglin Miao (Iowa State University)

Read More

DOM-XSS Detection via Webpage Interaction Fuzzing and URL Component...

Nuno Sabino (Carnegie Mellon University, Instituto Superior Técnico, Universidade de Lisboa, and Instituto de Telecomunicações), Darion Cassel (Carnegie Mellon University), Rui Abreu (Universidade do Porto, INESC-ID), Pedro Adão (Instituto Superior Técnico, Universidade de Lisboa, and Instituto de Telecomunicações), Lujo Bauer (Carnegie Mellon University), Limin Jia (Carnegie Mellon University)

Read More