Yarin Perry (The Hebrew University of Jerusalem), Neta Rozen-Schiff (The Hebrew University of Jerusalem), Michael Schapira (The Hebrew University of Jerusalem)

The Network Time Protocol (NTP) synchronizes time across computer systems over the Internet and plays a crucial role in guaranteeing the correctness and security of many Internet applications. Unfortunately, NTP is vulnerable to so called time shifting attacks. This has motivated proposals and standardization efforts for authenticating NTP communications and for securing NTP textit{clients}. We observe, however, that, even with such solutions in place, NTP remains highly exposed to attacks by malicious textit{timeservers}. We explore the implications for time computation of two attack strategies: (1) compromising textit{existing} NTP timeservers, and (2) injecting textit{new} timeservers into the NTP timeserver pool. We first show that by gaining control over fairly few existing timeservers, an textit{opportunistic} attacker can shift time at state-level or even continent-level scale. We then demonstrate that injecting new timeservers with disproportionate influence into the NTP timeserver pool is alarmingly simple, and can be leveraged for launching both large-scale textit{opportunistic} attacks, and strategic, textit{targeted} attacks. We discuss a promising approach for mitigating such attacks.

View More Papers

Digital Technologies in Pandemic: The Good, the Bad and...

Moderator: Ahmad-Reza Sadeghi, TU Darmstadt, Germany Panelists: Mario Guglielmetti, Legal Officer, European Data Protection Supervisor* Jaap-Henk Hoepman, Radbaud University, The Netherlands Alexandra Dmitrienko, University of Würzburg, Germany, Farinaz Koushanfar, UCSD, USA *attending in his personal capacity

Read More

Tales of Favicons and Caches: Persistent Tracking in Modern...

Konstantinos Solomos (University of Illinois at Chicago), John Kristoff (University of Illinois at Chicago), Chris Kanich (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

Ovid: Message-based Automatic Contact Tracing

Leonie Reichert and Samuel Brack (Humboldt University of Berlin); Björn Scheuermann (Humboldt-University of Berlin)

Read More

FlowLens: Enabling Efficient Flow Classification for ML-based Network Security...

Diogo Barradas (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Nuno Santos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Luis Rodrigues (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Salvatore Signorello (LASIGE, Faculdade de Ciências, Universidade de Lisboa), Fernando M. V. Ramos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), André Madeira (INESC-ID, Instituto Superior Técnico, Universidade de…

Read More