Ge Ren (Shanghai Jiao Tong University), Gaolei Li (Shanghai Jiao Tong University), Shenghong Li (Shanghai Jiao Tong University), Libo Chen (Shanghai Jiao Tong University), Kui Ren (Zhejiang University)

Well-trained deep neural network (DNN) models can be treated as commodities for commercial transactions and generate significant revenues, raising the urgent need for intellectual property (IP) protection against illegitimate reproducing. Emerging studies on IP protection often aim at inserting watermarks into DNNs, allowing owners to passively verify the ownership of target models after counterfeit models appear and commercial benefits are infringed, while active authentication against unauthorized queries of DNN-based applications is still neglected. In this paper, we propose a novel approach to protect model intellectual property, called ActiveDaemon, which incorporates a built-in access control function in DNNs to safeguard against commercial piracy. Specifically, our approach enables DNNs to predict correct outputs only for authorized users with user-specific tokens while producing poor accuracy for unauthorized users. In ActiveDaemon, the user-specific tokens are generated by a specially designed U-Net style encoder-decoder network, which can map strings and input images into numerous noise images to address identity management with large-scale user capacity. Compared to existing studies, these user-specific tokens are invisible, dynamic and more perceptually concealed, enhancing the stealthiness and reliability of model IP protection. To automatically wake up the model accuracy, we utilize the data poisoning-based training technique to unconsciously embed the ActiveDaemon into the neuron's function. We conduct experiments to compare the protection performance of ActiveDaemon with four state-of-the-art approaches over four datasets. The experimental results show that ActiveDaemon can reduce the accuracy of unauthorized queries by as much as 81% with less than a 1.4% decrease in that of authorized queries. Meanwhile, our approach can also reduce the LPIPS scores of the authorized tokens to 0.0027 on CIFAR10 and 0.0368 on ImageNet.

View More Papers

5G-Spector: An O-RAN Compliant Layer-3 Cellular Attack Detection Service

Haohuang Wen (The Ohio State University), Phillip Porras (SRI International), Vinod Yegneswaran (SRI International), Ashish Gehani (SRI International), Zhiqiang Lin (The Ohio State University)

Read More

AAKA: An Anti-Tracking Cellular Authentication Scheme Leveraging Anonymous Credentials

Hexuan Yu (Virginia Polytechnic Institute and State University), Changlai Du (Virginia Polytechnic Institute and State University), Yang Xiao (University of Kentucky), Angelos Keromytis (Georgia Institute of Technology), Chonggang Wang (InterDigital), Robert Gazda (InterDigital), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More

Efficient Normalized Reduction and Generation of Equivalent Multivariate Binary...

Arnau Gàmez-Montolio (City, University of London; Activision Research), Enric Florit (Universitat de Barcelona), Martin Brain (City, University of London), Jacob M. Howe (City, University of London)

Read More

Secure Multiparty Computation of Threshold Signatures Made More Efficient

Harry W. H. Wong (The Chinese University of Hong Kong), Jack P. K. Ma (The Chinese University of Hong Kong), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More