Giulia Scaffino (TU Wien), Lukas Aumayr (TU Wien), Mahsa Bastankhah (Princeton University), Zeta Avarikioti (TU Wien), Matteo Maffei (TU Wien)

Over the past decade, cryptocurrencies have garnered attention from academia and industry alike, fostering a diverse blockchain ecosystem and novel applications. The inception of bridges improved interoperability, enabling asset transfers across different blockchains to capitalize on their unique features. Despite their surge in popularity and the emergence of Decentralized Finance (DeFi), trustless bridge protocols remain inefficient, either relaying too much information (e.g., light-client-based bridges) or demanding expensive computation (e.g., zk-based bridges). These inefficiencies arise because existing bridges securely prove a transaction's on-chain inclusion on another blockchain. Yet this is unnecessary as off-chain solutions, like payment and state channels, permit safe transactions without on-chain publication. However, existing bridges do not support the verification of off-chain payments.

This paper fills this gap by introducing the concept of Pay2Chain bridges that leverage the advantages of off-chain solutions like payment channels to overcome current bridges' limitations. Our proposed Pay2Chain bridge, named Alba, facilitates the efficient, secure, and trustless execution of conditional payments or smart contracts on a target blockchain based on off-chain events. Alba, besides its technical advantages, enriches the source blockchain's ecosystem by facilitating DeFi applications, multi-asset payment channels, and optimistic stateful off-chain computation.

We formalize the security of Alba against Byzantine adversaries in the UC framework and complement it with a game theoretic analysis. We further introduce formal scalability metrics to demonstrate Alba's efficiency. Our empirical evaluation confirms Alba's efficiency in terms of communication complexity and on-chain costs, with its optimistic case incurring only twice the cost of a standard Ethereum transaction of token ownership transfer.

View More Papers

Time-varying Bottleneck Links in LEO Satellite Networks: Identification, Exploits,...

Yangtao Deng (Tsinghua University), Qian Wu (Tsinghua University), Zeqi Lai (Tsinghua University), Chenwei Gu (Tsinghua University), Hewu Li (Tsinghua University), Yuanjie Li (Tsinghua University), Jun Liu (Tsinghua University)

Read More

Detecting Ransomware Despite I/O Overhead: A Practical Multi-Staged Approach

Christian van Sloun (RWTH Aachen University), Vincent Woeste (RWTH Aachen University), Konrad Wolsing (RWTH Aachen University & Fraunhofer FKIE), Jan Pennekamp (RWTH Aachen University), Klaus Wehrle (RWTH Aachen University)

Read More

Automatic Insecurity: Exploring Email Auto-configuration in the Wild

Shushang Wen (School of Cyber Science and Technology, University of Science and Technology of China), Yiming Zhang (Tsinghua University), Yuxiang Shen (School of Cyber Science and Technology, University of Science and Technology of China), Bingyu Li (School of Cyber Science and Technology, Beihang University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Jingqiang Lin (School of Cyber…

Read More

Do We Really Need to Design New Byzantine-robust Aggregation...

Minghong Fang (University of Louisville), Seyedsina Nabavirazavi (Florida International University), Zhuqing Liu (University of North Texas), Wei Sun (Wichita State University), Sundararaja Iyengar (Florida International University), Haibo Yang (Rochester Institute of Technology)

Read More