Giulia Scaffino (TU Wien), Lukas Aumayr (TU Wien), Mahsa Bastankhah (Princeton University), Zeta Avarikioti (TU Wien), Matteo Maffei (TU Wien)

Over the past decade, cryptocurrencies have garnered attention from academia and industry alike, fostering a diverse blockchain ecosystem and novel applications. The inception of bridges improved interoperability, enabling asset transfers across different blockchains to capitalize on their unique features. Despite their surge in popularity and the emergence of Decentralized Finance (DeFi), trustless bridge protocols remain inefficient, either relaying too much information (e.g., light-client-based bridges) or demanding expensive computation (e.g., zk-based bridges). These inefficiencies arise because existing bridges securely prove a transaction's on-chain inclusion on another blockchain. Yet this is unnecessary as off-chain solutions, like payment and state channels, permit safe transactions without on-chain publication. However, existing bridges do not support the verification of off-chain payments.

This paper fills this gap by introducing the concept of Pay2Chain bridges that leverage the advantages of off-chain solutions like payment channels to overcome current bridges' limitations. Our proposed Pay2Chain bridge, named Alba, facilitates the efficient, secure, and trustless execution of conditional payments or smart contracts on a target blockchain based on off-chain events. Alba, besides its technical advantages, enriches the source blockchain's ecosystem by facilitating DeFi applications, multi-asset payment channels, and optimistic stateful off-chain computation.

We formalize the security of Alba against Byzantine adversaries in the UC framework and complement it with a game theoretic analysis. We further introduce formal scalability metrics to demonstrate Alba's efficiency. Our empirical evaluation confirms Alba's efficiency in terms of communication complexity and on-chain costs, with its optimistic case incurring only twice the cost of a standard Ethereum transaction of token ownership transfer.

View More Papers

Horcrux: Synthesize, Split, Shift and Stay Alive; Preventing Channel...

Anqi Tian (Institute of Software, Chinese Academy of Sciences; School of Computer Science and Technology, University of Chinese Academy of Sciences), Peifang Ni (Institute of Software, Chinese Academy of Sciences; Zhongguancun Laboratory, Beijing, P.R.China), Yingzi Gao (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Jing Xu (Institute of Software, Chinese…

Read More

Rethink Custom Transformers for Binary Analysis

Heng Yin, Professor, Department of Computer Science and Engineering, University of California, Riverside

Read More

Home Shield IoT Traffic Analyzer: A Comprehensive Analysis of...

Dhananjai Bajpai (Marquette University), Keyang Yu (Marquette University)

Read More

RACONTEUR: A Knowledgeable, Insightful, and Portable LLM-Powered Shell Command...

Jiangyi Deng (Zhejiang University), Xinfeng Li (Zhejiang University), Yanjiao Chen (Zhejiang University), Yijie Bai (Zhejiang University), Haiqin Weng (Ant Group), Yan Liu (Ant Group), Tao Wei (Ant Group), Wenyuan Xu (Zhejiang University)

Read More