Xin Zhang (Fudan University), Xiaohan Zhang (Fudan University), Zhichen Liu (Fudan University), Bo Zhao (Fudan University), Zhemin Yang (Fudan University), Min Yang (Fudan University)

Fingerprint-based authentication (FpAuth) is increasingly utilized by Android apps, particularly in highly sensitive scenarios such as account login and payment, as it can provide a convenient method for verifying user identity. However, the correct and secure use of Android fingerprint APIs (FpAPIs) in real-world mobile apps remains a challenge due to their complex and evolving nature.

This paper presents the first systematic empirical analysis of FpAPI misuses in Android apps from the perspective of the FpAuth lifecycle. First, we develop specialized tools to identify and analyze apps employing FpAPIs, examining their characteristics. Then we define the threat models and categorize four prevalent types of FpAPI misuses through a detailed lifecycle analysis in practical settings. Finally, we develop tools to automatically detect these misuse types in 1,333 apps that use FpAuth and find alarming results: 97.15% of them are vulnerable to at least one type of misuse, with 18.83% susceptible to all identified misuse types. The consequences of such misuses are significant, including unauthorized data access, account compromise, and even financial loss, impacting a broad user base. We have responsibly reported these vulnerabilities, resulting in the issuance of 184 CVE IDs and 19 China National Vulnerability Database (CNVD) IDs, as well as acknowledgment from 15 vendors. We hope this work can raise awareness and emphasize the importance of proper usage of FpAPIs.

View More Papers

L-HAWK: A Controllable Physical Adversarial Patch Against a Long-Distance...

Taifeng Liu (Xidian University), Yang Liu (Xidian University), Zhuo Ma (Xidian University), Tong Yang (Peking University), Xinjing Liu (Xidian University), Teng Li (Xidian University), Jianfeng Ma (Xidian University)

Read More

Can a Cybersecurity Question Answering Assistant Help Change User...

Lea Duesterwald (Carnegie Mellon University), Ian Yang (Carnegie Mellon University), Norman Sadeh (Carnegie Mellon University)

Read More

SKILLPoV: Towards Accessible and Effective Privacy Notice for Amazon...

Jingwen Yan (Clemson University), Song Liao (Texas Tech University), Mohammed Aldeen (Clemson University), Luyi Xing (Indiana University Bloomington), Danfeng (Daphne) Yao (Virginia Tech), Long Cheng (Clemson University)

Read More

Too Subtle to Notice: Investigating Executable Stack Issues in...

Hengkai Ye (The Pennsylvania State University), Hong Hu (The Pennsylvania State University)

Read More