Andrea Oliveri (EURECOM), Matteo Dell'Amico (University of Genoa), Davide Balzarotti (EURECOM)

The analysis of memory dumps presents unique challenges, as operating systems use a variety of (often undocumented) ways to represent data in memory. To solve this problem, forensics tools maintain collections of models that precisely describe the kernel data structures used by a handful of operating systems. However, these models cannot be generalized and developing new models may require a very long and tedious reverse engineering effort for closed source systems. In the last years, the tremendous increase in the number of IoT devices, smart-home appliances and cloud-hosted VMs resulted in a growing number of OSs which are not supported by current forensics tools. The way we have been doing memory forensics until today, based on handwritten models and rules, cannot simply keep pace with this variety of systems.

To overcome this problem, in this paper we introduce the new concept of emph{OS-agnostic memory forensics}, which is based on techniques that can recover certain forensics information without emph{any} knowledge of the internals of the underlying OS. Our approach allows to automatically identify different types of data structures by using only their topological constraints and then supports two modes of investigation. In the first, it allows to traverse the recovered structures by starting from predetermined textit{seeds}, i.e., pieces of forensics-relevant information (such as a process name or an IP address) that an analyst knows emph{a priori} or that can be easily identified in the dump. Our experiments show that even a single seed can be sufficient to recover the entire list of processes and other important forensics data structures in dumps obtained from 14 different OSs, without any knowledge of the underlying kernels. In the second mode of operation, our system requires no seed but instead uses a set of heuristics to rank all memory data structures and present to the analysts only the most `promising' ones. Even in this case, our experiments show that an analyst can use our approach to easily identify forensics-relevant structured information in a truly OS-agnostic scenario.

View More Papers

Sometimes, You Aren’t What You Do: Mimicry Attacks against...

Akul Goyal (University of Illinois at Urbana-Champaign), Xueyuan Han (Wake Forest University), Gang Wang (University of Illinois at Urbana-Champaign), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

Accurate Compiler and Optimization Independent Function Identification Using Program...

Derrick McKee (Purdue University), Nathan Burow (MIT Lincoln Laboratory), Mathias Payer (EPFL)

Read More

Hope of Delivery: Extracting User Locations From Mobile Instant...

Theodor Schnitzler (Research Center Trustworthy Data Science and Security, TU Dortmund, and Ruhr-Universität Bochum), Katharina Kohls (Radboud University), Evangelos Bitsikas (Northeastern University and New York University Abu Dhabi), Christina Pöpper (New York University Abu Dhabi)

Read More

Firefly: Spoofing Earth Observation Satellite Data through Radio Overshadowing

Edd Salkield, Sebastian Köhler, Simon Birnbach, Richard Baker (University of Oxford). Martin Strohmeier (armasuisse S+T), Ivan Martinovic (University of Oxford) Presenter: Edd Salkield

Read More