Jeremy Daily, David Nnaji, and Ben Ettlinger (Colorado State University)

Diagnostics and maintenance systems create frequent, legitimate, and intermittent connections to a vehicle’s communication network. These connections are typically made with a vehicle diagnostics adapter (VDA), which serves to translate vehicle network communications to a Windows based service computer running diagnostics software. With heavy vehicles, the diagnostic systems are written and maintained by the supplier of the electronic control units. This means there may be multiple different software packages needed to maintain a heavy vehicle. However, all of these software systems use an interface defined by the American Trucking Association (ATA) through their Technology and Maintenance Council (TMC) using Recommended Practice (RP) number 1210, the Windows API for vehicle diagnostics. Therefore, most diagnostics and maintenance communications on a heavy vehicles utilize a thirdparty VDA with little to no cybersecurity controls. The firmware and drivers for the VDA can be entry points for cyber attacks. In this demonstration, a vehicle diagnostics session is attacked using the VDA firmware, VDA PC driver, and a middle-person attack. A proposed secure diagnostics gateway is demonstrated to secure the diagnostics communications between the heavy vehicle network and the diagnostics application, thus defending against attacks on vulnerable VDA components. Furthermore, the maintenance operations are often trusted and an attacker gains physical access to the vehicle with the unknowing technician. Since these diagnostic systems are connected to the Internet and run Windows, the traditional security issues associated with Windows PCs are now part of the heavy vehicle.

View More Papers

Tales of Favicons and Caches: Persistent Tracking in Modern...

Konstantinos Solomos (University of Illinois at Chicago), John Kristoff (University of Illinois at Chicago), Chris Kanich (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

POP and PUSH: Demystifying and Defending against (Mach) Port-oriented...

Min Zheng (Orion Security Lab, Alibaba Group), Xiaolong Bai (Orion Security Lab, Alibaba Group), Yajin Zhou (Zhejiang University), Chao Zhang (Institute for Network Science and Cyberspace, Tsinghua University), Fuping Qu (Orion Security Lab, Alibaba Group)

Read More

Demo #14: In-Vehicle Communication Using Named Data Networking

Zachariah Threet (Tennessee Tech), Christos Papadopoulos (University of Memphis), Proyash Poddar (Florida International University), Alex Afanasyev (Florida International University), William Lambert (Tennessee Tech), Haley Burnell (Tennessee Tech), Sheikh Ghafoor (Tennessee Tech) and Susmit Shannigrahi (Tennessee Tech)

Read More

FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping

Xiaoyu Cao (Duke University), Minghong Fang (The Ohio State University), Jia Liu (The Ohio State University), Neil Zhenqiang Gong (Duke University)

Read More