Henry Xu, An Ju, and David Wagner (UC Berkeley)

Baidu Security Auto-Driving Security Award Winner ($1000 cash
prize)!

Susceptibility of neural networks to adversarial attack prompts serious safety concerns for lane detection efforts, a domain where such models have been widely applied. Recent work on adversarial road patches have successfully induced perception of lane lines with arbitrary form, presenting an avenue for rogue control of vehicle behavior. In this paper, we propose a modular lane verification system that can catch such threats before the autonomous driving system is misled while remaining agnostic to the particular lane detection model. Our experiments show that implementing the system with a simple convolutional neural network (CNN) can defend against a wide gamut of attacks on lane detection models. With a 10% impact to inference time, we can detect 96% of bounded non-adaptive attacks, 90% of bounded adaptive attacks, and 98% of patch attacks while preserving accurate identification at least 95% of true lanes, indicating that our proposed verification system is effective at mitigating lane detection security risks with minimal overhead.

View More Papers

SymQEMU: Compilation-based symbolic execution for binaries

Sebastian Poeplau (EURECOM and Code Intelligence), Aurélien Francillon (EURECOM)

Read More

Securing CAN Traffic on J1939 Networks

Jeremy Daily, David Nnaji, and Ben Ettlinger (Colorado State University)

Read More

MINOS: A Lightweight Real-Time Cryptojacking Detection System

Faraz Naseem (Florida International University), Ahmet Aris (Florida International University), Leonardo Babun (Florida International University), Ege Tekiner (Florida International University), A. Selcuk Uluagac (Florida International University)

Read More

Emilia: Catching Iago in Legacy Code

Rongzhen Cui (University of Toronto), Lianying Zhao (Carleton University), David Lie (University of Toronto)

Read More