Henry Xu, An Ju, and David Wagner (UC Berkeley)

Baidu Security Auto-Driving Security Award Winner ($1000 cash
prize)!

Susceptibility of neural networks to adversarial attack prompts serious safety concerns for lane detection efforts, a domain where such models have been widely applied. Recent work on adversarial road patches have successfully induced perception of lane lines with arbitrary form, presenting an avenue for rogue control of vehicle behavior. In this paper, we propose a modular lane verification system that can catch such threats before the autonomous driving system is misled while remaining agnostic to the particular lane detection model. Our experiments show that implementing the system with a simple convolutional neural network (CNN) can defend against a wide gamut of attacks on lane detection models. With a 10% impact to inference time, we can detect 96% of bounded non-adaptive attacks, 90% of bounded adaptive attacks, and 98% of patch attacks while preserving accurate identification at least 95% of true lanes, indicating that our proposed verification system is effective at mitigating lane detection security risks with minimal overhead.

View More Papers

WINNIE : Fuzzing Windows Applications with Harness Synthesis and...

Jinho Jung (Georgia Institute of Technology), Stephen Tong (Georgia Institute of Technology), Hong Hu (Pennsylvania State University), Jungwon Lim (Georgia Institute of Technology), Yonghwi Jin (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Read More

Securing CAN Traffic on J1939 Networks

Jeremy Daily, David Nnaji, and Ben Ettlinger (Colorado State University)

Read More

Demo #9: Dynamic Time Warping as a Tool for...

Mars Rayno (Colorado State University) and Jeremy Daily (Colorado State University)

Read More

Let’s Stride Blindfolded in a Forest: Sublinear Multi-Client Decision...

Jack P. K. Ma (The Chinese University of Hong Kong), Raymond K. H. Tai (The Chinese University of Hong Kong), Yongjun Zhao (Nanyang Technological University), Sherman S.M. Chow (The Chinese University of Hong Kong)

Read More