Yulong Cao, Jiaxiang Ma, Kevin Fu (University of Michigan), Sara Rampazzi (University of Florida), and Z. Morley Mao (University of Michigan)

Best Demo Award Runner-up ($200 cash prize)!

Recent studies have demonstrated that LiDAR sensors are vulnerable to spoofing attacks, in which adversaries spoof fake points to fool the car’s perception system to see nonexistent obstacles. However, these attacks are generally conducted on static or simulated scenarios. Therefore, in this demo, we perform the first LiDAR spoofing attack on moving targets. We implemented a minimal tracking system integrated with the spoofer device to perform laser-based attacks on Lidar sensors. The demo shows how it is possible to inject up to 100 fake cloud points under three different scenarios.

View More Papers

DRIVETRUTH: Automated Autonomous Driving Dataset Generation for Security Applications

Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

Read More

Demo #8: Security of Camera-based Perception for Autonomous Driving...

Christopher DiPalma, Ningfei Wang, Takami Sato, and Qi Alfred Chen (UC Irvine)

Read More

Ovid: Message-based Automatic Contact Tracing

Leonie Reichert and Samuel Brack (Humboldt University of Berlin); Björn Scheuermann (Humboldt-University of Berlin)

Read More