Christopher DiPalma, Ningfei Wang, Takami Sato, and Qi Alfred Chen (UC Irvine)

Robust perception is crucial for autonomous vehicle security. In this work, we design a practical adversarial patch attack against camera-based obstacle detection. We identify that the back of a box truck is an effective attack vector. We also improve attack robustness by considering a variety of input frames associated with the attack scenario. This demo includes videos that show our attack can cause end-to-end consequences on a representative autonomous driving system in a simulator.

View More Papers

Tales of Favicons and Caches: Persistent Tracking in Modern...

Konstantinos Solomos (University of Illinois at Chicago), John Kristoff (University of Illinois at Chicago), Chris Kanich (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

Improving Signal's Sealed Sender

Ian Martiny (University of Colorado Boulder), Gabriel Kaptchuk (Boston University), Adam Aviv (The George Washington University), Dan Roche (U.S. Naval Avademy), Eric Wustrow (University of Colorado Boulder)

Read More

(Short) Fooling Perception via Location: A Case of Region-of-Interest...

Kanglan Tang, Junjie Shen, and Qi Alfred Chen (UC Irvine)

Read More