Christopher DiPalma, Ningfei Wang, Takami Sato, and Qi Alfred Chen (UC Irvine)

Robust perception is crucial for autonomous vehicle security. In this work, we design a practical adversarial patch attack against camera-based obstacle detection. We identify that the back of a box truck is an effective attack vector. We also improve attack robustness by considering a variety of input frames associated with the attack scenario. This demo includes videos that show our attack can cause end-to-end consequences on a representative autonomous driving system in a simulator.

View More Papers

Let’s Stride Blindfolded in a Forest: Sublinear Multi-Client Decision...

Jack P. K. Ma (The Chinese University of Hong Kong), Raymond K. H. Tai (The Chinese University of Hong Kong), Yongjun Zhao (Nanyang Technological University), Sherman S.M. Chow (The Chinese University of Hong Kong)

Read More

Why Do Programmers Do What They Do? A Theory...

Lavanya Sajwan, James Noble, Craig Anslow (Victoria University of Wellington), Robert Biddle (Carleton University)

Read More

When DNS Goes Dark: Understanding Privacy and Shaping Policy...

Vijay k. Gurbani and Cynthia Hood ( Illinois Institute of Technology), Anita Nikolich (University of Illinois), Henning Schulzrinne (Columbia University) and Radu State (University of Luxembourg)

Read More

Towards a TEE-based V2V Protocol for Connected and Autonomous...

Mohit Kumar Jangid (Ohio State University) and Zhiqiang Lin (Ohio State University)

Read More