Lesly-Ann Daniel (CEA List), Sébastien Bardin (CEA List, Université Paris-Saclay), Tamara Rezk (INRIA)

Spectre attacks are microarchitectural attacks exploiting speculative execution in processors that were made public in 2018. Since then, several tools have been proposed to detect vulnerabilities to Spectre attacks in software. However, most of these tools do not scale on real world binary code---especially for the Spectre-STL, or Spectre-v4, variant exploiting store-to-load dependencies. We propose an optimization for symbolic execution to make it more efficient for Spectre analysis, implement it in a tool, Binsec/Haunted, and evaluate it on cryptographic libraries.

In this talk, we focus on the experimental part of our work. In particular, we discuss several concerns regarding Spectre vulnerability detection: how to make the result not too difficult to interpret, how to validate our results while ground truth is not easily accessible, etc. More generally, we also address experimental methodology relevant to binary-level analysis and symbolic execution: how to specify secret/public input at binary level, how to evaluate our choices regarding the solver and the construction of the formula, etc.

Speaker's biographies

Lesly-Ann Daniel is a third year PhD student at CEA List, working under the supervision of Sébastien Bardin and Tamara Rezk. She is interested in the application of formal methods for software security, in particular in the context of binary analysis. Currently, she works on designing automatic verification tools for security properties at binary level, with applications to constant-time cryptography, secret-erasure, and detection of Spectre attacks. She received her master’s degree in 2018 from the University of Rennes (France).

View More Papers

Impact Evaluation of Falsified Data Attacks on Connected Vehicle...

Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor) Best Paper Award Runner-up ($200 cash prize)!

Read More

Доверя́й, но проверя́й: SFI safety for native-compiled Wasm

Evan Johnson (University of California San Diego), David Thien (University of California San Diego), Yousef Alhessi (University of California San Diego), Shravan Narayan (University Of California San Diego), Fraser Brown (Stanford University), Sorin Lerner (University of California San Diego), Tyler McMullen (Fastly Labs), Stefan Savage (University of California San Diego), Deian Stefan (University of California…

Read More

Towards Measuring Supply Chain Attacks on Package Managers for...

Ruian Duan (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Ranjita Pai Kasturi (Georgia Institute of Technology), Ryan Elder (Georgia Institute of Technology), Brendan Saltaformaggio (Georgia Institute of Technology), Wenke Lee (Georgia Institute of Technology)

Read More

OblivSketch: Oblivious Network Measurement as a Cloud Service

Shangqi Lai (Monash University), Xingliang Yuan (Monash University), Joseph K. Liu (Monash University), Xun Yi (RMIT University), Qi Li (Tsinghua University), Dongxi Liu (Data61, CSIRO), Surya Nepal (Data61, CSIRO)

Read More