Ali Sadeghi Jahromi, AbdelRahman Abdou (Carleton University)

The Internet’s Public Key Infrastructure (PKI) has been used to provide security to HTTPS and other protocols over the Internet. Such infrastructure began to be increasingly relied upon for DNS security. DNS-over-TLS (DoT) is one recent rising and prominent example, whereby DNS traffic between stub and recursive resolver gets transmitted over a TLS-secured session. The security research community has studied and improved security shortcomings in the web certificate ecosystem. DoT’s certificates, on the other hand, have not been investigated comprehensively. It is also unclear if DoT client-side tools (e.g., stub resolvers) enforce security properly as modern-day browsers and mail clients do for HTTPS and secure email. In this research, we compare the DoT and HTTPS certificate ecosystems. Preliminary results are so far promising, as they show that DoT appears to have benefited from the PKI security advancements that were mostly tailored to HTTPS.

View More Papers

Understanding Worldwide Private Information Collection on Android

Yun Shen (NortonLifeLock Research Group), Pierre-Antoine Vervier (NortonLifeLock Research Group), Gianluca Stringhini (Boston University)

Read More

WATSON: Abstracting Behaviors from Audit Logs via Aggregation of...

Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Read More

More than a Fair Share: Network Data Remanence Attacks...

Leila Rashidi (University of Calgary), Daniel Kostecki (Northeastern University), Alexander James (University of Calgary), Anthony Peterson (Northeastern University), Majid Ghaderi (University of Calgary), Samuel Jero (MIT Lincoln Laboratory), Cristina Nita-Rotaru (Northeastern University), Hamed Okhravi (MIT Lincoln Laboratory), Reihaneh Safavi-Naini (University of Calgary)

Read More