Tracy Tam, Asha Rao, and Joanne Hall (RMIT)

COVID19 has made small businesses around the world rapidly adopt new online sales channels and tools. In this digital push for survival, the cybersecurity of the new systems has likely been forgotten. An existing global cybersecurity skills shortage means traditional individualised security assessments for these newly digital businesses are not practical. This paper proposes a web based self-assessment system (SE-CAP) to enable small business owners to conduct their own cybersecurity assessments. Designed with rapid deployability in mind, SE-CAP uses proven web based technologies to deliver a new solution to help small businesses become cyber-safe. The design of SE-CAP takes into account small business issues around record keeping, time constraints and poor technical literacy. The generic nature of the system allows SE-CAP’s host organisation to customise and extend the self-assessment system beyond its initial scope. Challenges with industry cybersecurity knowledge gaps prevent SE-CAP’s completeness. However, these gaps could be filled, in the interim, by the host organisation.

View More Papers

Empirical Scanning Analysis of Censys and Shodan

Christopher Bennett, AbdelRahman Abdou, and Paul C. van Oorschot (School of Computer Science, Carleton University, Canada)

Read More

POSEIDON: Privacy-Preserving Federated Neural Network Learning

Sinem Sav (EPFL), Apostolos Pyrgelis (EPFL), Juan Ramón Troncoso-Pastoriza (EPFL), David Froelicher (EPFL), Jean-Philippe Bossuat (EPFL), Joao Sa Sousa (EPFL), Jean-Pierre Hubaux (EPFL)

Read More

GALA: Greedy ComputAtion for Linear Algebra in Privacy-Preserved Neural...

Qiao Zhang (Old Dominion University), Chunsheng Xin (Old Dominion University), Hongyi Wu (Old Dominion University)

Read More

PhantomCache: Obfuscating Cache Conflicts with Localized Randomization

Qinhan Tan (Zhejiang University), Zhihua Zeng (Zhejiang University), Kai Bu (Zhejiang University), Kui Ren (Zhejiang University)

Read More