Xianbo Wang (The Chinese University of Hong Kong), Shangcheng Shi (The Chinese University of Hong Kong), Yikang Chen (The Chinese University of Hong Kong), Wing Cheong Lau (The Chinese University of Hong Kong)

Nowadays, most mobile devices are equipped with various hardware interfaces such as touchscreen, fingerprint scanner, camera and microphone to capture inputs from the user.
Many mobile apps use these physical interfaces to receive user-input for authentication/authorization operations including one-click login, fingerprint-based payment approval, and face/voice unlocking.
In this paper, we investigate the so-called PHYjacking attack where a victim is misled by a zero-permission malicious app to feed physical inputs to different hardware interfaces on a mobile device to result in unintended authorization.
We analyze the protection mechanisms in Android for different types of physical input interfaces and introduce new techniques to bypass them.
Specifically, we identify weaknesses in the existing protection schemes for the related system APIs and observe common pitfalls when apps implement physical-input-based authorization.
Worse still, we discover a race-condition bug in Android that can be exploited even when app-based mitigations are properly implemented.
Based on these findings, we introduce fingerprint-jacking and facejacking techniques and demonstrate their impact on real apps.
We also discuss the feasibility of launching similar attacks against NFC and microphone inputs, as well as effective tapjacking attacks against Single Sign-On apps.
We have designed a static analyzer to examine 3000+ real-world apps and find 44% of them contain PHYjacking-related implementation flaws.
We demonstrate the practicality and potential impact of PHYjacking via proof-of-concept implementations which enable unauthorized money transfer on a payment app with over 800 million users, user-privacy leak from a social media app with over 400 million users and escalating app permissions in Android 11.

View More Papers

Remote Memory-Deduplication Attacks

Martin Schwarzl (Graz University of Technology), Erik Kraft (Graz University of Technology), Moritz Lipp (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

Fine-Grained Coverage-Based Fuzzing

Bernard Nongpoh (Université Paris Saclay), Marwan Nour (Université Paris Saclay), Michaël Marcozzi (Université Paris Saclay), Sébastien Bardin (Université Paris Saclay)

Read More

All things Binary

Dr. Sergey Bratus, DARPA PI and Research Associate Professor at Dartmouth College

Read More

MobFuzz: Adaptive Multi-objective Optimization in Gray-box Fuzzing

Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More