Fabio Streun (ETH Zurich), Joel Wanner (ETH Zurich), Adrian Perrig (ETH Zurich)

Many systems today rely heavily on virtual private network (VPN) technology to connect networks and protect services on the Internet. While prior studies compare the performance of different implementations, they do not consider adversarial settings. To address this gap, we evaluate the resilience of VPN implementations to flooding-based denial-of-service (DoS) attacks.

We focus on a class of emph{stateless flooding} attacks, which are particularly threatening because an attacker that operates stealthily by spoofing its IP addresses can perform them.
We have implemented various attacks to evaluate the DoS resilience of four widely used VPN solutions and measured their impact on a high-performance server with a $40,mathrm{Gb/s}$ interface, which has revealed surprising results:
An adversary can deny data transfer over an already established WireGuard connection with just $300,mathrm{Mb/s}$ of attack traffic.
When using strongSwan (IPsec), $75,mathrm{Mb/s}$ of attack traffic is sufficient to block connection establishment.
A $100,mathrm{Mb/s}$ flood overwhelms OpenVPN, denying data transfer through VPN connections and connection establishments.
Cisco's AnyConnect VPN solution can be overwhelmed with even less attack traffic:
When using IPsec, $50,mathrm{Mb/s}$ of attack traffic deny connection establishment. When using SSL, $50,mathrm{Mb/s}$ suffice to deny data transfer over already established connections.
Furthermore, performance analysis of WireGuard revealed significant inefficiencies in the implementation related to multi-core synchronization. We also found vulnerabilities in the implementations of strongSwan and OpenVPN, which an attacker can easily exploit for highly effective DoS attacks.
These findings demonstrate the need for adversarial testing of VPN implementations with respect to DoS resilience.

View More Papers

DITTANY: Strength-Based Dynamic Information Flow Analysis Tool for x86...

Walid J. Ghandour, Clémentine Maurice (CNRS, CRIStAL)

Read More

Interpretable Federated Transformer Log Learning for Cloud Threat Forensics

Gonzalo De La Torre Parra (University of the Incarnate Word, TX, USA), Luis Selvera (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA), Joseph Khoury (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Hector Irizarry (Raytheon, USA), Elias Bou-Harb (The Cyber Center For…

Read More

HeadStart: Efficiently Verifiable and Low-Latency Participatory Randomness Generation at...

Hsun Lee (National Taiwan University), Yuming Hsu (National Taiwan University), Jing-Jie Wang (National Taiwan University), Hao Cheng Yang (National Taiwan University), Yu-Heng Chen (National Taiwan University), Yih-Chun Hu (University of Illinois at Urbana-Champaign), Hsu-Chun Hsiao (National Taiwan University)

Read More

ProvTalk: Towards Interpretable Multi-level Provenance Analysis in Networking Functions...

Azadeh Tabiban (CIISE, Concordia University, Montreal, QC, Canada), Heyang Zhao (CIISE, Concordia University, Montreal, QC, Canada), Yosr Jarraya (Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada), Makan Pourzandi (Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada), Mengyuan Zhang (Department of Computing, The Hong Kong Polytechnic University, China), Lingyu Wang (CIISE, Concordia University, Montreal, QC, Canada)

Read More