Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Coverage-guided gray-box fuzzing (CGF) is an efficient software testing technique. There are usually multiple objectives to optimize in CGF. However, existing CGF methods cannot successfully find the optimal values for multiple objectives simultaneously. In this paper, we propose a gray-box fuzzer for multi-objective optimization (MOO) called MobFuzz. We model the multi-objective optimization process as a multi-player multi-armed bandit (MPMAB). First, it adaptively selects the objective combination that contains the most appropriate objectives for the current situation. Second, our model deals with the power schedule, which adaptively allocates energy to the seeds under the chosen objective combination. In MobFuzz, we propose an evolutionary algorithm called NIC to optimize our chosen objectives simultaneously without incurring additional performance overhead. To prove the effectiveness of MobFuzz, we conduct experiments on 12 real-world programs and the MAGMA data set. Experiment results show that multi-objective optimization in MobFuzz outperforms single-objective fuzzing in the baseline fuzzers. In contrast to them, MobFuzz can select the optimal objective combination and increase the values of multiple objectives up to 107%, with at most a 55% reduction in the energy consumption. Moreover, MobFuzz has up to 6% more program coverage and finds 3x more unique bugs than the baseline fuzzers. The NIC algorithm has at least a 2x improvement with a performance overhead of approximately 3%.

View More Papers

Shipping security at scale in the Chrome browser

Adriana Porter Felt (Director of Engineering for Chrome)

Read More

PHYjacking: Physical Input Hijacking for Zero-Permission Authorization Attacks on...

Xianbo Wang (The Chinese University of Hong Kong), Shangcheng Shi (The Chinese University of Hong Kong), Yikang Chen (The Chinese University of Hong Kong), Wing Cheong Lau (The Chinese University of Hong Kong)

Read More

Hybrid Trust Multi-party Computation with Trusted Execution Environment

Pengfei Wu (School of Computing, National University of Singapore), Jianting Ning (College of Computer and Cyber Security, Fujian Normal University; Institute of Information Engineering, Chinese Academy of Sciences), Jiamin Shen (School of Computing, National University of Singapore), Hongbing Wang (School of Computing, National University of Singapore), Ee-Chien Chang (School of Computing, National University of Singapore)

Read More

Generating 3D Adversarial Point Clouds under the Principle of...

Bo Yang (Zhejiang University), Yushi Cheng (Tsinghua University), Zizhi Jin (Zhejiang University), Xiaoyu Ji (Zhejiang University) and Wenyuan Xu (Zhejiang University)

Read More