Kaiming Huang (Penn State University), Yongzhe Huang (Penn State University), Mathias Payer (EPFL), Zhiyun Qian (UC Riverside), Jack Sampson (Penn State University), Gang Tan (Penn State University), Trent Jaeger (Penn State University)

Despite vast research on defenses to protect stack objects from the exploitation of memory errors, much stack data remains at risk. Historically, stack defenses focus on the protection of code pointers, such as return addresses, but emerging techniques to exploit memory errors motivate the need for practical solutions to protect stack data objects as well. However, recent approaches provide an incomplete view of security by not accounting for memory errors comprehensively and by limiting the set of objects that can be protected unnecessarily. In this paper, we present the DataGuard system that identifies which stack objects are safe statically from spatial, type, and temporal memory errors to protect those objects efficiently. DataGuard improves security through a more comprehensive and accurate safety analysis that proves a larger number of stack objects are safe from memory errors, while ensuring that no unsafe stack objects are mistakenly classified as safe. DataGuard's analysis of server programs and the SPEC CPU2006 benchmark suite shows that DataGuard improves security by: (1) ensuring that no memory safety violations are possible for any stack objects classified as safe, removing 6.3% of the stack objects previously classified safe by the Safe Stack method, and (2) blocking exploit of all 118 stack vulnerabilities in the CGC Binaries. DataGuard extends the scope of stack protection by validating as safe over 70% of the stack objects classified as unsafe by the Safe Stack method, leading to an average of 91.45% of all stack objects that can only be referenced safely. By identifying more functions with only safe stack objects, DataGuard reduces the overhead of using Clang's Safe Stack defense for protection of the SPEC CPU2006 benchmarks from 11.3% to 4.3%. Thus, DataGuard shows that a comprehensive and accurate analysis can both increase the scope of stack data protection and reduce overheads.

View More Papers

ScriptChecker: To Tame Third-party Script Execution With Task Capabilities

Wu Luo (Peking University), Xuhua Ding (Singapore Management University), Pengfei Wu (School of Computing, National University of Singapore), Xiaolei Zhang (Peking University), Qingni Shen (Peking University), Zhonghai Wu (Peking University)

Read More

DRAWN APART: A Device Identification Technique based on Remote...

Tomer Laor (Ben-Gurion Univ. of the Negev), Naif Mehanna (Univ. Lille, CNRS, Inria), Antonin Durey (Univ. Lille, CNRS, Inria), Vitaly Dyadyuk (Ben-Gurion Univ. of the Negev), Pierre Laperdrix (Univ. Lille, CNRS, Inria), Clémentine Maurice (Univ. Lille, CNRS, Inria), Yossi Oren (Ben-Gurion Univ. of the Negev), Romain Rouvoy (Univ. Lille, CNRS, Inria / IUF), Walter Rudametkin…

Read More

PMTUD is not Panacea: Revisiting IP Fragmentation Attacks against...

Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Baojun Liu (Tsinghua University), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.), Qiushi Yang (QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.), Haixin Duan…

Read More

Demystifying Local Business Search Poisoning for Illicit Drug Promotion

Peng Wang (Indiana University Bloomington), Zilong Lin (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington)

Read More