Kaiming Huang (Penn State University), Yongzhe Huang (Penn State University), Mathias Payer (EPFL), Zhiyun Qian (UC Riverside), Jack Sampson (Penn State University), Gang Tan (Penn State University), Trent Jaeger (Penn State University)

Despite vast research on defenses to protect stack objects from the exploitation of memory errors, much stack data remains at risk. Historically, stack defenses focus on the protection of code pointers, such as return addresses, but emerging techniques to exploit memory errors motivate the need for practical solutions to protect stack data objects as well. However, recent approaches provide an incomplete view of security by not accounting for memory errors comprehensively and by limiting the set of objects that can be protected unnecessarily. In this paper, we present the DataGuard system that identifies which stack objects are safe statically from spatial, type, and temporal memory errors to protect those objects efficiently. DataGuard improves security through a more comprehensive and accurate safety analysis that proves a larger number of stack objects are safe from memory errors, while ensuring that no unsafe stack objects are mistakenly classified as safe. DataGuard's analysis of server programs and the SPEC CPU2006 benchmark suite shows that DataGuard improves security by: (1) ensuring that no memory safety violations are possible for any stack objects classified as safe, removing 6.3% of the stack objects previously classified safe by the Safe Stack method, and (2) blocking exploit of all 118 stack vulnerabilities in the CGC Binaries. DataGuard extends the scope of stack protection by validating as safe over 70% of the stack objects classified as unsafe by the Safe Stack method, leading to an average of 91.45% of all stack objects that can only be referenced safely. By identifying more functions with only safe stack objects, DataGuard reduces the overhead of using Clang's Safe Stack defense for protection of the SPEC CPU2006 benchmarks from 11.3% to 4.3%. Thus, DataGuard shows that a comprehensive and accurate analysis can both increase the scope of stack data protection and reduce overheads.

View More Papers

Vehicle Lateral Motion Stability Under Wheel Lockup Attacks

Alireza Mohammadi (University of Michigan-Dearborn) and Hafiz Malik (University of Michigan-Dearborn)

Read More

DrawnApart: A Deep-Learning Enhanced GPU Fingerprinting Technique

Naif Mehanna (University of Lille, CNRS, Inria), Tomer Laor (Ben-Gurion University of the Negev)

Read More

WIP: On Robustness of Lane Detection Models to Physical-World...

Takami Sato (UC Irvine) and Qi Alfred Chen (UC Irvine)

Read More

Forensic Analysis of Configuration-based Attacks

Muhammad Adil Inam (University of Illinois at Urbana-Champaign), Wajih Ul Hassan (University of Illinois at Urbana-Champaign), Ali Ahad (University of Virginia), Adam Bates (University of Illinois at Urbana-Champaign), Rashid Tahir (University of Prince Mugrin), Tianyin Xu (University of Illinois at Urbana-Champaign), Fareed Zaffar (LUMS)

Read More