Hongjun Choi (Purdue University), Zhiyuan Cheng (Purdue University), Xiangyu Zhang (Purdue University)

Robotic vehicle (RV) attack forensics identifies root cause of an accident. Reproduction of accident and reasoning about its causation are critical steps in the process. Ideally, such investigation would be performed in real-world field tests by faithfully regenerating the environmental conditions and varying the different factors to understand causality. However, such analysis is extremely expensive and in many cases infeasible due to the difficulties of enforcing physical conditions. Existing RV forensics techniques focus on faithful accident reproduction in simulation and hence lack the support of causality reasoning. They also entail substantial overhead. We propose RVPLAYER, a system for RV forensics. It supports replay with what if reasoning inside simulator (e.g., checking if an accident can be avoided by changing some control parameter, code, or vehicle states). It is a low-cost replacement of the expensive field test based forensics. It features an efficient demand-driven adaptive logging method capturing non-deterministic physical conditions, and a novel replay technique supporting various replay policies that selectively enable/disable information during replay for root cause analysis. Our evaluation on 6 RVs (4 real and 2 virtual), 5 real-world auto-driving traces, and 1194 attack instances of various kinds reported in the literature shows that it can precisely pinpoint the root causes of these attacks without false positives. It has only 6.57% of the overhead of a simple logging design.

View More Papers

Detecting CAN Masquerade Attacks with Signal Clustering Similarity

Pablo Moriano (Oak Ridge National Laboratory), Robert A. Bridges (Oak Ridge National Laboratory) and Michael D. Iannacone (Oak Ridge National Laboratory)

Read More

Semantic-Informed Driver Fuzzing Without Both the Hardware Devices and...

Wenjia Zhao (Xi'an Jiaotong University and University of Minnesota), Kangjie Lu (University of Minnesota), Qiushi Wu (University of Minnesota), Yong Qi (Xi'an Jiaotong University)

Read More

RamBoAttack: A Robust and Query Efficient Deep Neural Network...

Viet Quoc Vo (The University of Adelaide), Ehsan Abbasnejad (The University of Adelaide), Damith C. Ranasinghe (University of Adelaide)

Read More

Detecting Obfuscated Function Clones in Binaries using Machine Learning

Michael Pucher (University of Vienna), Christian Kudera (SBA Research), Georg Merzdovnik (SBA Research)

Read More