Ren Zhang (Nervos), Dingwei Zhang (Nervos), Quake Wang (Nervos), Shichen Wu (School of Cyber Science and Technology, Shandong University), Jan Xie (Nervos), Bart Preneel (imec-COSIC, KU Leuven)

First implemented in Bitcoin, Nakamoto Consensus (NC) is the most influential consensus protocol in cryptocurrencies despite all the alternative protocols designed afterward. Nevertheless, NC is trapped by a security-performance tradeoff. While existing efforts mostly attempt to break this tradeoff via abandoning or adjusting NC's backbone protocol, we alternatively forward the relevance of the network layer. We identify and experimentally prove that the crux resides with the prolonged block propagation latency caused by not-yet-propagated transactions. We thus present a two-step mechanism to confirm only fully-propagated transactions, and therefore remove the limits upon NC's performance imposed by its security demands, realizing NC's untapped potential. Implementing this two-step mechanism, we propose NC-Max, whose (1) security is analyzed, proving that it provides stronger resistance than NC against transaction withholding attacks, and (2) performance is evaluated, showing that it exhausts the full throughput supported by the network, and shortens the transaction confirmation latency by 3.0 to 6.6 times compared to NC without compromising security. NC-Max is implemented in Nervos CKB, a public permissionless blockchain.

View More Papers

PMTUD is not Panacea: Revisiting IP Fragmentation Attacks against...

Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Baojun Liu (Tsinghua University), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.), Qiushi Yang (QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.), Haixin Duan…

Read More

Demo #10: Hijacking Connected Vehicle Alexa Skills

Wenbo Ding (University at Buffalo), Long Cheng (Clemson University), Xianghang Mi (University of Science and Technology of China), Ziming Zhao (University at Buffalo) and Hongxin Hu (University at Buffalo)

Read More