Yizhuo Zhai (University of California, Riverside), Yu Hao (University of California, Riverside), Zheng Zhang (University of California, Riverside), Weiteng Chen (University of California, Riverside), Guoren Li (University of California, Riverside), Zhiyun Qian (University of California, Riverside), Chengyu Song (University of California, Riverside), Manu Sridharan (University of California, Riverside), Srikanth V. Krishnamurthy (University of California, Riverside),…

The Linux kernel has a rapid development cycle, with 10 commits every hour, on average. While these updates provide new features and bug fixes, they can also introduce new bugs and security vulnerabilities. Recent techniques showed how to detect some types of vulnerabilities using static analysis, but these tools cannot run quickly enough to keep up with the pace of kernel development. Ideally, an incremental analysis technique could address this problem, by doing a complete analysis once and then only analyzing changed portions of the code subsequently. However, incremental analysis of the Linux kernel poses unique challenges, due to its enormous scale and the high precision required to reduce false positives.

In this paper, we design and implement INCRELUX, a novel Linux kernel incremental analysis tool. It allows rapid vulnerability detection after each update, via targeted analysis of the new code and affected prior code, and also speeds the tracking of pre-existing bugs to understand how long they have been present, thereby increasing awareness of such bugs. Our approach hinges on a bottom-up, function-summary-based approach, which leverages the benefits of a one-time clean-slate, but expensive analysis of a prior Linux baseline. INCRELUX also uses an effective heuristic to apply symbolic execution to incremental results to improve precision. Via extensive experiments on the challenging problem of finding use-before-initialization (UBI) bugs, we showcase a number of benefits of INCRELUX: (a) we can rapidly check if any new releases introduce UBI bugs and help eliminate them early in the process. (b) we perform a historical analysis to determine when a bug was first introduced and when it was fixed (a critical procedure in bug triage in the Linux kernel). (c) we compare the incremental analysis results with a clean-slate analysis and show our approach yields nearly the exact same results, demonstrating its fidelity in addition to efficiency. While the clean-slate analysis took 106.45 hours, the incremental analysis was often completed within minutes, achieving an average 200 X speed-up for the mainline kernel and 440X on average, when analyzing stable branches.

View More Papers

MobFuzz: Adaptive Multi-objective Optimization in Gray-box Fuzzing

Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

Chhoyhopper: A Moving Target Defense with IPv6

A S M Rizvi (University of Southern California/Information Sciences Institute) and John Heidemann (University of Southern California/Information Sciences Institute)

Read More

Uncovering Cross-Context Inconsistent Access Control Enforcement in Android

Hao Zhou (The Hong Kong Polytechnic University), Haoyu Wang (Beijing University of Posts and Telecommunications), Xiapu Luo (The Hong Kong Polytechnic University), Ting Chen (University of Electronic Science and Technology of China), Yajin Zhou (Zhejiang University), Ting Wang (Pennsylvania State University)

Read More

Chunked-Cache: On-Demand and Scalable Cache Isolation for Security Architectures

Ghada Dessouky (Technical University of Darmstadt), Emmanuel Stapf (Technical University of Darmstadt), Pouya Mahmoody (Technical University of Darmstadt), Alexander Gruler (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More