Gonzalo De La Torre Parra (University of the Incarnate Word, TX, USA), Luis Selvera (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA), Joseph Khoury (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Hector Irizarry (Raytheon, USA), Elias Bou-Harb (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Paul Rad (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA)

Threat detection and forensics have become an imperative objective for any digital forensic triage. Supervised approaches have been proposed for inferring system and network anomalies; including anomaly detection contributions using syslogs. Nevertheless, most works downplay the importance of the interpretability of a model's decision-making process. In this research, we are among the first to propose an interpretable federated transformer log learning model for threat detection supporting explainable cyber forensics. The proposed model is generated by training a local transformer-based threat detection model at each client in an organizational unit. Local models learn the system's normal behavior from the syslogs which keep records of execution flows. Subsequently, a federated learning server aggregates the learned model parameters from local models to generate a global federated learning model. Log time-series capturing normal behavior are expected to differ from those possessing cyber threat activity. We demonstrate this difference through a goodness of fit test based on Karl-Pearson's Chi-square statistic. To provide insights on actions triggering this difference, we integrate an attention-based interpretability module.

We implement and evaluate our proposed model using HDFS, a publicly available log dataset, and an in-house collected and publicly-released dataset named CTDD, which consists of more than 8 million syslogs representing cloud collaboration services and systems compromised by different classes of cyber threats. Moreover, through different experiments, we demonstrate the log agnostic capability and applicability of our approach on real-world operational settings such as edge computing systems. Our interpretability module manifests significant attention difference between normal and abnormal logs which provide insightful interpretability of the model's decision-making process. Finally, we deem the obtained results as a validation for the appropriate adoption of our approach in achieving threat forensics in the real world.

View More Papers

Progressive Scrutiny: Incremental Detection of UBI bugs in the...

Yizhuo Zhai (University of California, Riverside), Yu Hao (University of California, Riverside), Zheng Zhang (University of California, Riverside), Weiteng Chen (University of California, Riverside), Guoren Li (University of California, Riverside), Zhiyun Qian (University of California, Riverside), Chengyu Song (University of California, Riverside), Manu Sridharan (University of California, Riverside), Srikanth V. Krishnamurthy (University of California, Riverside),…

Read More

Demo #9: Dynamic Time Warping as a Tool for...

Mars Rayno (Colorado State University) and Jeremy Daily (Colorado State University)

Read More

Evaluating Susceptibility of VPN Implementations to DoS Attacks Using...

Fabio Streun (ETH Zurich), Joel Wanner (ETH Zurich), Adrian Perrig (ETH Zurich)

Read More

FirmWire: Transparent Dynamic Analysis for Cellular Baseband Firmware

Grant Hernandez (University of Florida), Marius Muench (Vrije Universiteit Amsterdam), Dominik Maier (TU Berlin), Alyssa Milburn (Vrije Universiteit Amsterdam), Shinjo Park (TU Berlin), Tobias Scharnowski (Ruhr-University Bochum), Tyler Tucker (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More