Saba Eskandarian (University of North Carolina at Chapel Hill), Dan Boneh (Stanford University)

This paper studies the role of multiparty shuffling protocols in enabling more efficient metadata-hiding communication. We show that the process of shuffling messages can be expedited by having servers collaboratively shuffle and verify secret-shares of messages instead of using a conventional mixnet approach where servers take turns performing independent verifiable shuffles of user messages. We apply this technique to achieve both practical and asymptotic improvements in anonymous broadcast and messaging systems. We first show how to build a three server anonymous broadcast scheme, secure against one malicious server, that relies only on symmetric cryptography. Next, we adapt our three server broadcast scheme to a k-server scheme secure against k-1 malicious servers, at the cost of a more expensive per-shuffle preprocessing phase. Finally, we show how our scheme can be used to significantly improve the performance of the MCMix anonymous messaging system.

We implement our shuffling protocol in a system called Clarion and find that it outperforms a mixnet made up of a sequence of verifiable (single-server) shuffles by 9.2x for broadcasting small messages and outperforms the MCMix conversation protocol by 11.8x.

View More Papers

MobFuzz: Adaptive Multi-objective Optimization in Gray-box Fuzzing

Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

Euler: Detecting Network Lateral Movement via Scalable Temporal Graph...

Isaiah J. King (The George Washington University), H. Howie Huang (The George Washington University)

Read More

Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Chongzhou Fang (University of California, Davis), Han Wang (University of California, Davis), Najmeh Nazari (University of California, Davis), Behnam Omidi (George Mason University), Avesta Sasan (University of California, Davis), Khaled N. Khasawneh (George Mason University), Setareh Rafatirad (University of California, Davis), Houman Homayoun (University of California, Davis)

Read More