Jim Alves-Foss, Varsha Venugopal (University of Idaho)

The effectiveness of binary analysis tools and techniques is often measured with respect to how well they map to a ground truth. We have found that not all ground truths are created equal. This paper challenges the binary analysis community to take a long look at the concept of ground truth, to ensure that we are in agreement with definition(s) of ground truth, so that we can be confident in the evaluation of tools and techniques. This becomes even more important as we move to trained machine learning models, which are only as useful as the validity of the ground truth in the training.

View More Papers

Clarion: Anonymous Communication from Multiparty Shuffling Protocols

Saba Eskandarian (University of North Carolina at Chapel Hill), Dan Boneh (Stanford University)

Read More

CBAT: A Comparative Binary Analysis Tool

Chloe Fortuna (STR), JT Paasch (STR), Sam Lasser (Draper), Philip Zucker (Draper), Chris Casinghino (Jane Street), Cody Roux (AWS)

Read More

Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Chongzhou Fang (University of California, Davis), Han Wang (University of California, Davis), Najmeh Nazari (University of California, Davis), Behnam Omidi (George Mason University), Avesta Sasan (University of California, Davis), Khaled N. Khasawneh (George Mason University), Setareh Rafatirad (University of California, Davis), Houman Homayoun (University of California, Davis)

Read More

Reflections on Artifact Evaluation

Dr. Eric Eide (University of Utah)

Read More