Jim Alves-Foss, Varsha Venugopal (University of Idaho)

The effectiveness of binary analysis tools and techniques is often measured with respect to how well they map to a ground truth. We have found that not all ground truths are created equal. This paper challenges the binary analysis community to take a long look at the concept of ground truth, to ensure that we are in agreement with definition(s) of ground truth, so that we can be confident in the evaluation of tools and techniques. This becomes even more important as we move to trained machine learning models, which are only as useful as the validity of the ground truth in the training.

View More Papers

WIP: On Robustness of Lane Detection Models to Physical-World...

Takami Sato (UC Irvine) and Qi Alfred Chen (UC Irvine)

Read More

A Cross-Architecture Instruction Embedding Model for Natural Language Processing-Inspired...

Kimberly Redmond (University of South Carolina), Lannan Luo (University of South Carolina), Qiang Zeng (University of South Carolina)

Read More

Generation of CAN-based Wheel Lockup Attacks on the Dynamics...

Alireza Mohammadi (University of Michigan-Dearborn), Hafiz Malik (University of Michigan-Dearborn) and Masoud Abbaszadeh (GE Global Research)

Read More