Alireza Mohammadi (University of Michigan-Dearborn), Hafiz Malik (University of Michigan-Dearborn) and Masoud Abbaszadeh (GE Global Research)

Recent automotive hacking incidences have demonstrated that when an adversary manages to gain access to a safety-critical CAN, severe safety implications will ensue. Under such threats, this paper explores the capabilities of an adversary who is interested in engaging the car brakes at full speed and would like to cause wheel lockup conditions leading to catastrophic road injuries. This paper shows that the physical capabilities of a CAN attacker can be studied through the lens of closed-loop attack policy design. In particular, it is demonstrated that the adversary can cause wheel lockups by means of closed-loop attack policies for commanding the frictional brake actuators under a limited knowledge of the tire-road interaction characteristics. The effectiveness of the proposed wheel lockup attack policy is shown via numerical simulations under different road conditions.

View More Papers

RamBoAttack: A Robust and Query Efficient Deep Neural Network...

Viet Quoc Vo (The University of Adelaide), Ehsan Abbasnejad (The University of Adelaide), Damith C. Ranasinghe (University of Adelaide)

Read More

Chosen-Instruction Attack Against Commercial Code Virtualization Obfuscators

Shijia Li (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data Security Technology), Chunfu Jia (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data Security Technology), Pengda Qiu (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data…

Read More

ATTEQ-NN: Attention-based QoE-aware Evasive Backdoor Attacks

Xueluan Gong (Wuhan University), Yanjiao Chen (Zhejiang University), Jianshuo Dong (Wuhan University), Qian Wang (Wuhan University)

Read More

All things Binary

Dr. Sergey Bratus, DARPA PI and Research Associate Professor at Dartmouth College

Read More