Alireza Mohammadi (University of Michigan-Dearborn), Hafiz Malik (University of Michigan-Dearborn) and Masoud Abbaszadeh (GE Global Research)

Recent automotive hacking incidences have demonstrated that when an adversary manages to gain access to a safety-critical CAN, severe safety implications will ensue. Under such threats, this paper explores the capabilities of an adversary who is interested in engaging the car brakes at full speed and would like to cause wheel lockup conditions leading to catastrophic road injuries. This paper shows that the physical capabilities of a CAN attacker can be studied through the lens of closed-loop attack policy design. In particular, it is demonstrated that the adversary can cause wheel lockups by means of closed-loop attack policies for commanding the frictional brake actuators under a limited knowledge of the tire-road interaction characteristics. The effectiveness of the proposed wheel lockup attack policy is shown via numerical simulations under different road conditions.

View More Papers

RamBoAttack: A Robust and Query Efficient Deep Neural Network...

Viet Quoc Vo (The University of Adelaide), Ehsan Abbasnejad (The University of Adelaide), Damith C. Ranasinghe (University of Adelaide)

Read More

COOPER: Testing the Binding Code of Scripting Languages with...

Peng Xu (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Yanhao Wang (QI-ANXIN Technology Research Institute), Hong Hu (Pennsylvania State University), Purui Su (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences)

Read More

Kasper: Scanning for Generalized Transient Execution Gadgets in the...

Brian Johannesmeyer (VU Amsterdam), Jakob Koschel (VU Amsterdam), Kaveh Razavi (ETH Zurich), Herbert Bos (VU Amsterdam), Cristiano Giuffrida (VU Amsterdam)

Read More

WIP: Infrastructure-Aided Defense for Autonomous Driving Systems: Opportunities and...

Yunpeng Luo (UC Irvine), Ningfei Wang (UC Irvine), Bo Yu (PerceptIn), Shaoshan Liu (PerceptIn) and Qi Alfred Chen (UC Irvine)

Read More