Bo Yang (Zhejiang University), Yushi Cheng (Tsinghua University), Zizhi Jin (Zhejiang University), Xiaoyu Ji (Zhejiang University) and Wenyuan Xu (Zhejiang University)

Due to the booming of autonomous driving, in which LiDAR plays a critical role in the task of environment perception, its reliability issues have drawn much attention recently. LiDARs usually utilize deep neural models for 3D point cloud perception, which have been demonstrated to be vulnerable to imperceptible adversarial examples. However, prior work usually manipulates point clouds in the digital world without considering the physical working principle of the actual LiDAR. As a result, the generated adversarial point clouds may be realizable and effective in simulation but cannot be perceived by physical LiDARs. In this work, we introduce the physical principle of LiDARs and propose a new method for generating 3D adversarial point clouds in accord with it that can achieve two types of spoofing attacks: object hiding and object creating. We also evaluate the effectiveness of the proposed method with two 3D object detectors on the KITTI vision benchmark.

View More Papers

Demo #9: Attacking Multi-Sensor Fusion based Localization in High-Level...

Junjie Shen, Jun Yeon Won, Zeyuan Chen and Qi Alfred Chen (UC Irvine)

Read More

Detecting Obfuscated Function Clones in Binaries using Machine Learning

Michael Pucher (University of Vienna), Christian Kudera (SBA Research), Georg Merzdovnik (SBA Research)

Read More

DRIVETRUTH: Automated Autonomous Driving Dataset Generation for Security Applications

Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

Read More

ScriptChecker: To Tame Third-party Script Execution With Task Capabilities

Wu Luo (Peking University), Xuhua Ding (Singapore Management University), Pengfei Wu (School of Computing, National University of Singapore), Xiaolei Zhang (Peking University), Qingni Shen (Peking University), Zhonghai Wu (Peking University)

Read More