This paper studies the role of multiparty shuffling protocols in enabling more efficient metadata-hiding communication. We show that the process of shuffling messages can be expedited by having servers collaboratively shuffle and verify secret-shares of messages instead of using a conventional mixnet approach where servers take turns performing independent verifiable shuffles of user messages. We apply this technique to achieve both practical and asymptotic improvements in anonymous broadcast and messaging systems. We first show how to build a three server anonymous broadcast scheme, secure against one malicious server, that relies only on symmetric cryptography. Next, we adapt our three server broadcast scheme to a k-server scheme secure against k-1 malicious servers, at the cost of a more expensive per-shuffle preprocessing phase. Finally, we show how our scheme can be used to significantly improve the performance of the MCMix anonymous messaging system.

We implement our shuffling protocol in a system called Clarion and find that it outperforms a mixnet made up of a sequence of verifiable (single-server) shuffles by 9.2x for broadcasting small messages and outperforms the MCMix conversation protocol by 11.8x.

View More Papers

SoK: A Proposal for Incorporating Gamified Cybersecurity Awareness in...

June De La Cruz (INSPIRIT Lab, University of Denver), Sanchari Das (INSPIRIT Lab, University of Denver)

Read More

Progressive Scrutiny: Incremental Detection of UBI bugs in the...

Yizhuo Zhai (University of California, Riverside), Yu Hao (University of California, Riverside), Zheng Zhang (University of California, Riverside), Weiteng Chen...

Read More

What Storage? An Empirical Analysis of Web Storage in...

Zubair Ahmad (Università Ca’ Foscari Venezia), Samuele Casarin (Università Ca’ Foscari Venezia), and Stefano Calzavara (Università Ca’ Foscari Venezia)

Read More

Forensic Analysis of Configuration-based Attacks

Muhammad Adil Inam (University of Illinois at Urbana-Champaign), Wajih Ul Hassan (University of Illinois at Urbana-Champaign), Ali Ahad (University of...

Read More