Saba Eskandarian (University of North Carolina at Chapel Hill), Dan Boneh (Stanford University)

This paper studies the role of multiparty shuffling protocols in enabling more efficient metadata-hiding communication. We show that the process of shuffling messages can be expedited by having servers collaboratively shuffle and verify secret-shares of messages instead of using a conventional mixnet approach where servers take turns performing independent verifiable shuffles of user messages. We apply this technique to achieve both practical and asymptotic improvements in anonymous broadcast and messaging systems. We first show how to build a three server anonymous broadcast scheme, secure against one malicious server, that relies only on symmetric cryptography. Next, we adapt our three server broadcast scheme to a k-server scheme secure against k-1 malicious servers, at the cost of a more expensive per-shuffle preprocessing phase. Finally, we show how our scheme can be used to significantly improve the performance of the MCMix anonymous messaging system.

We implement our shuffling protocol in a system called Clarion and find that it outperforms a mixnet made up of a sequence of verifiable (single-server) shuffles by 9.2x for broadcasting small messages and outperforms the MCMix conversation protocol by 11.8x.

View More Papers

Local and Central Differential Privacy for Robustness and Privacy...

Mohammad Naseri (University College London), Jamie Hayes (DeepMind), Emiliano De Cristofaro (University College London & Alan Turing Institute)

Read More

ditto: WAN Traffic Obfuscation at Line Rate

Roland Meier (ETH Zürich), Vincent Lenders (armasuisse), Laurent Vanbever (ETH Zürich)

Read More

PHYjacking: Physical Input Hijacking for Zero-Permission Authorization Attacks on...

Xianbo Wang (The Chinese University of Hong Kong), Shangcheng Shi (The Chinese University of Hong Kong), Yikang Chen (The Chinese University of Hong Kong), Wing Cheong Lau (The Chinese University of Hong Kong)

Read More

FedCRI: Federated Mobile Cyber-Risk Intelligence

Hossein Fereidooni (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Phillip Rieger (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Felix Madlener (KOBIL)

Read More