Md Hasan Shahriar, Wenjing Lou, Y. Thomas Hou (Virginia Polytechnic Institute and State University)

ZOOX Best Paper Award Runner-Up!

A controller area network (CAN) connects dozens of electronic control units (ECUs), ensuring reliable and efficient data transmission. Because of the lack of security features of CAN protocol, in-vehicle networks are susceptible to a wide spectrum of threats, from simple injections at high frequencies to sophisticated masquerade attacks that target individual sensor values (signals). Hence, advanced analysis of the multidimensional time-series data is needed to learn the complex patterns of individual signals and their mutual dependencies. Although deep learning (DL)-based intrusion detection systems (IDS) have shown potential in such domain, they tend to suffer from poor generalization as they need optimization at every component. To detect such advanced CAN attacks, we propose CANtropy, a manual feature engineering-based lightweight CAN IDS. For each signal, CANtropy explores a comprehensive set of features from both temporal and statistical domains and selects only the effective subset of features in the detection pipeline to ensure scalability. Later, CANtropy uses a lightweight unsupervised anomaly detection model based on principal component analysis, to learn the mutual dependencies of the features and detect abnormal patterns in the sequence of CAN messages. The evaluation results on the advanced SynCAN dataset show that CANtropy provides a comprehensive defense against diverse types of cyberattacks with an average AUROC score of 0.992, and outperforms the existing DL-based baselines.

View More Papers

Smarter Contracts: Detecting Vulnerabilities in Smart Contracts with Deep...

Christoph Sendner (University of Wuerzburg), Huili Chen (University of California San Diego), Hossein Fereidooni (Technische Universität Darmstadt), Lukas Petzi (University of Wuerzburg), Jan König (University of Wuerzburg), Jasper Stang (University of Wuerzburg), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Farinaz Koushanfar (University of California San Diego)

Read More

Machine Unlearning of Features and Labels

Alexander Warnecke (TU Braunschweig), Lukas Pirch (TU Braunschweig), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Konrad Rieck (TU Braunschweig)

Read More

GPS Spoofing Attack Detection on Intersection Movement Assist using...

Jun Ying (Purdue University), Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan)

Read More

Semi-Automated Synthesis of Driving Rules

Diego Ortiz, Leilani Gilpin, Alvaro A. Cardenas (University of California, Santa Cruz)

Read More