Muslum Ozgur Ozmen, Habiba Farrukh, Hyungsub Kim, Antonio Bianchi, Z. Berkay Celik (Purdue University)

Drone swarms are becoming increasingly prevalent in important missions, including military operations, rescue tasks, environmental monitoring, and disaster recovery. Member drones coordinate with each other to efficiently and effectively accomplish a given mission. To automatically coordinate a swarm, member drones exchange critical messages (e.g., their positions, locations of identified obstacles, and detected search targets) about their observed environment and missions over wireless communication channels. Therefore, swarms need a pairing system to establish secure communication channels that protect the confidentiality and integrity of the messages. However, swarm properties and the open physical environment in which they operate bring unique challenges in establishing cryptographic keys between drones.

In this paper, we first outline an adversarial model and the ideal design requirements for secure pairing in drone swarms. We then survey existing human-in-the-loop-based, context-based, and public key cryptography (PKC) based pairing methods to explore their feasibility in drone swarms. Our exploration, unfortunately, shows that existing techniques fail to fully meet the unique requirements of drone swarms. Thus, we propose research directions that can meet these requirements for secure, energy-efficient, and scalable swarm pairing systems.

View More Papers

POSE: Practical Off-chain Smart Contract Execution

Tommaso Frassetto (Technical University of Darmstadt), Patrick Jauernig (Technical University of Darmstadt), David Koisser (Technical University of Darmstadt), David Kretzler (Technical University of Darmstadt), Benjamin Schlosser (Technical University of Darmstadt), Sebastian Faust (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Learning Automated Defense Strategies Using Graph-Based Cyber Attack Simulations

Jakob Nyber, Pontus Johnson (KTH Royal Institute of Technology)

Read More

Why do Internet Devices Remain Vulnerable? A Survey with...

Tamara Bondar, Hala Assal, AbdelRahman Abdou (Carleton University)

Read More

WIP: An Adaptive High Frequency Removal Attack to Bypass...

Yuki Hayakawa (Keio University), Takami Sato (University of California, Irvine), Ryo Suzuki, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More