Muslum Ozgur Ozmen, Habiba Farrukh, Hyungsub Kim, Antonio Bianchi, Z. Berkay Celik (Purdue University)

Drone swarms are becoming increasingly prevalent in important missions, including military operations, rescue tasks, environmental monitoring, and disaster recovery. Member drones coordinate with each other to efficiently and effectively accomplish a given mission. To automatically coordinate a swarm, member drones exchange critical messages (e.g., their positions, locations of identified obstacles, and detected search targets) about their observed environment and missions over wireless communication channels. Therefore, swarms need a pairing system to establish secure communication channels that protect the confidentiality and integrity of the messages. However, swarm properties and the open physical environment in which they operate bring unique challenges in establishing cryptographic keys between drones.

In this paper, we first outline an adversarial model and the ideal design requirements for secure pairing in drone swarms. We then survey existing human-in-the-loop-based, context-based, and public key cryptography (PKC) based pairing methods to explore their feasibility in drone swarms. Our exploration, unfortunately, shows that existing techniques fail to fully meet the unique requirements of drone swarms. Thus, we propose research directions that can meet these requirements for secure, energy-efficient, and scalable swarm pairing systems.

View More Papers

ProbFlow : Using Probabilistic Programming in Anonymous Communication Networks

Hussein Darir (University of Illinois Urbana-Champaign), Geir Dullerud (University of Illinois Urbana-Champaign), Nikita Borisov (University of Illinois Urbana-Champaign)

Read More

Securing Federated Sensitive Topic Classification against Poisoning Attacks

Tianyue Chu (IMDEA Networks Institute), Alvaro Garcia-Recuero (IMDEA Networks Institute), Costas Iordanou (Cyprus University of Technology), Georgios Smaragdakis (TU Delft), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More

FCGAT: Interpretable Malware Classification Method using Function Call Graph...

Minami Someya (Institute of Information Security), Yuhei Otsubo (National Police Academy), Akira Otsuka (Institute of Information Security)

Read More