Noah T. Curran (University of Michigan), Kang G. Shin (University of Michigan), William Hass (Lear Corporation), Lars Wolleschensky (Lear Corporation), Rekha Singoria (Lear Corporation), Isaac Snellgrove (Lear Corporation), Ran Tao (Lear Corporation)

ETAS Best Short Paper Award Runner-Up!

On urban roadways, “dooring” remains a serious problem to the safety of pedestrians, cyclists, and other vulnerable road users (VRUs). Existing solutions that address this concern remain inadequate, as they either place unreasonable expectations on the pedestrians or rely on prohibitively expensive additions to the vehicle’s sensing capabilities. Consequently, typical consumer vehicles are not yet equipped with such a technology, and practical dooring prevention still remains a safety concern.
To address this problem, we propose a driver safety system for dooring prevention called S-Door that uses existing resources available in every modern vehicle: Bluetooth Low-Energy (BLE). Since a modern vehicle is distributively equipped with multiple BLE transceivers, we leverage each transceiver to observe BLE advertising data (AD) packets that consumers’ smart devices passively transmit. From these AD packets, we extract information that we can use to localize the VRU device without pairing with the device. With this information, we propose two methods for localization based on BLE versions ≤5.0 and ≥5.1, respectively. Our solutions are capable of alerting the driver of all instances of an oncoming VRU. Due to S-Door’s use of existing vehicle BLE hardware, we may extend this application to modern vehicles through a firmware update—no physical modification is necessary.

View More Papers

WIP: Infrared Laser Reflection Attack Against Traffic Sign Recognition...

Takami Sato (University of California, Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

Securing Federated Sensitive Topic Classification against Poisoning Attacks

Tianyue Chu (IMDEA Networks Institute), Alvaro Garcia-Recuero (IMDEA Networks Institute), Costas Iordanou (Cyprus University of Technology), Georgios Smaragdakis (TU Delft), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More

A Cross-Verification Approach with Publicly Available Map for Detecting...

Takami Sato, Ningfei Wang (University of California, Irvine), Yueqiang Cheng (NIO Security Research), Qi Alfred Chen (University of California, Irvine)

Read More

RR: A Fault Model for Efficient TEE Replication

Baltasar Dinis (Instituto Superior Técnico (IST-ULisboa) / INESC-ID / MPI-SWS), Peter Druschel (MPI-SWS), Rodrigo Rodrigues (Instituto Superior Técnico (IST-ULisboa) / INESC-ID)

Read More