Rik Chatterjee, Subhojeet Mukherjee, Jeremy Daily (Colorado State University)

Modern vehicles are equipped with embedded computers that utilize standard protocols for internal communication. The SAE J1939 protocols running on top of the Controller Area Network (CAN) protocol is the primary choice of internal communication for embedded computers in medium and heavy-duty vehicles. This paper presents five different cases in which potential shortcomings of the SAE J1939 standards are exploited to launch attacks on in-vehicle computers that constitute SAE J1939 networks.
In the first two of these scenarios, we validate the previously proposed attack hypothesis on more comprehensive testing setups. In the later three of these scenarios, we present newer attack vectors that can be executed on bench test setups and deployed SAE J1939 networks.
For the purpose of demonstration, we use bench-level test systems with real electronic control units connected to a CAN bus. Additional testing was conducted on a 2014 Kenworth T270 Class 6 truck under both stationary and driving conditions. Test results show how protocol attacks can target specific ECUs. These attacks should be considered by engineers and programmers implementing the J1939 protocol stack in their communications subsystem.

View More Papers

Cyclops: Binding a Vehicle’s Digital Identity to its Physical...

Lewis William Koplon, Ameer Ghasem Nessaee, Alex Choi (University of Arizona, Tucson), Andres Mentoza (New Mexico State University, Las Cruces), Michael Villasana, Loukas Lazos, Ming Li (University of Arizona, Tucson)

Read More

Short: Rethinking Secure Pairing in Drone Swarms

Muslum Ozgur Ozmen, Habiba Farrukh, Hyungsub Kim, Antonio Bianchi, Z. Berkay Celik (Purdue University)

Read More

REDsec: Running Encrypted Discretized Neural Networks in Seconds

Lars Wolfgang Folkerts (University of Delaware), Charles Gouert (University of Delaware), Nektarios Georgios Tsoutsos (University of Delaware)

Read More

The “Beatrix” Resurrections: Robust Backdoor Detection via Gram Matrices

Wanlun Ma (Swinburne University of Technology), Derui Wang (CSIRO’s Data61), Ruoxi Sun (The University of Adelaide & CSIRO's Data61), Minhui Xue (CSIRO's Data61), Sheng Wen (Swinburne University of Technology), Yang Xiang (Digital Research & Innovation Capability Platform, Swinburne University of Technology)

Read More