Ron Marcovich, Orna Grumberg, Gabi Nakibly (Technion, Israel Institute of Technology)

protocol from a binary code that implements it. This process is useful in cases such as extraction of the command and control protocol of a malware, uncovering security vulnerabilities in a network protocol implementation or verifying conformance to the protocol’s standard. Protocol inference usually involves time-consuming work to manually reverse engineer the binary code.

We present a novel method to automatically infer state machine of a network protocol and its message formats directly from the binary code. To the best of our knowledge, this is the first method to achieve this solely based on a binary code of a single peer. We do not assume any of the following: access to a remote peer, access to captures of the protocol’s traffic, and prior knowledge of message formats. The method leverages extensions to symbolic execution and novel modifications to automata learning. We validate the proposed method by inferring real-world protocols including the C&C protocol of Gh0st RAT, a well-known malware

View More Papers

PPA: Preference Profiling Attack Against Federated Learning

Chunyi Zhou (Nanjing University of Science and Technology), Yansong Gao (Nanjing University of Science and Technology), Anmin Fu (Nanjing University of Science and Technology), Kai Chen (Chinese Academy of Science), Zhiyang Dai (Nanjing University of Science and Technology), Zhi Zhang (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Yuqing Zhang (University of Chinese Academy of Science)

Read More

TBD

Ryo Ichikawa, Captain of CTF Team TokyoWesterns

Read More

A Case Study on Fuzzing Satellite Firmware

Tobias Scharnowski and Felix Buchmann (Ruhr-Universitat Bochum), Simon Woerner and Thorsten Holz (CISPA Helmholtz Center for Information Security) Presenter: Tobias Scharnowski

Read More

Learning Automated Defense Strategies Using Graph-Based Cyber Attack Simulations

Jakob Nyber, Pontus Johnson (KTH Royal Institute of Technology)

Read More