Ron Marcovich, Orna Grumberg, Gabi Nakibly (Technion, Israel Institute of Technology)

protocol from a binary code that implements it. This process is useful in cases such as extraction of the command and control protocol of a malware, uncovering security vulnerabilities in a network protocol implementation or verifying conformance to the protocol’s standard. Protocol inference usually involves time-consuming work to manually reverse engineer the binary code.

We present a novel method to automatically infer state machine of a network protocol and its message formats directly from the binary code. To the best of our knowledge, this is the first method to achieve this solely based on a binary code of a single peer. We do not assume any of the following: access to a remote peer, access to captures of the protocol’s traffic, and prior knowledge of message formats. The method leverages extensions to symbolic execution and novel modifications to automata learning. We validate the proposed method by inferring real-world protocols including the C&C protocol of Gh0st RAT, a well-known malware

View More Papers

VulHawk: Cross-architecture Vulnerability Detection with Entropy-based Binary Code Search

Zhenhao Luo (College of Computer, National University of Defense Technology), Pengfei Wang (College of Computer, National University of Defense Technology), Baosheng Wang (College of Computer, National University of Defense Technology), Yong Tang (College of Computer, National University of Defense Technology), Wei Xie (College of Computer, National University of Defense Technology), Xu Zhou (College of Computer,…

Read More

DARWIN: Survival of the Fittest Fuzzing Mutators

Patrick Jauernig (Technical University of Darmstadt), Domagoj Jakobovic (University of Zagreb, Croatia), Stjepan Picek (Radboud University and TU Delft), Emmanuel Stapf (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Effects of Precise and Imprecise Value-Set Analysis (VSA) Information...

Laura Matzen, Michelle A Leger, Geoffrey Reedy (Sandia National Laboratories)

Read More