Ron Marcovich, Orna Grumberg, Gabi Nakibly (Technion, Israel Institute of Technology)

protocol from a binary code that implements it. This process is useful in cases such as extraction of the command and control protocol of a malware, uncovering security vulnerabilities in a network protocol implementation or verifying conformance to the protocol’s standard. Protocol inference usually involves time-consuming work to manually reverse engineer the binary code.

We present a novel method to automatically infer state machine of a network protocol and its message formats directly from the binary code. To the best of our knowledge, this is the first method to achieve this solely based on a binary code of a single peer. We do not assume any of the following: access to a remote peer, access to captures of the protocol’s traffic, and prior knowledge of message formats. The method leverages extensions to symbolic execution and novel modifications to automata learning. We validate the proposed method by inferring real-world protocols including the C&C protocol of Gh0st RAT, a well-known malware

View More Papers

Parakeet: Practical Key Transparency for End-to-End Encrypted Messaging

Harjasleen Malvai (UIUC/IC3), Lefteris Kokoris-Kogias (IST Austria), Alberto Sonnino (Mysten Labs), Esha Ghosh (Microsoft Research), Ercan Oztürk (Meta), Kevin Lewi (Meta), Sean Lawlor (Meta)

Read More

Faster Secure Comparisons with Offline Phase for Efficient Private...

Florian Kerschbaum (University of Waterloo), Erik-Oliver Blass (Airbus), Rasoul Akhavan Mahdavi (University of Waterloo)

Read More

Operationalizing Cybersecurity Research Ethics Review: From Principles and Guidelines...

Dennis Reidsma, Jeroen van der Ham, and Andrea Continella (University of Twente)

Read More

CLIK on PLCs! Attacking Control Logic with Decompilation and...

Sushma Kalle (University of New Orleans), Nehal Ameen (University of New Orleans), Hyunguk Yoo (University of New Orleans), Irfan Ahmed (Virginia Commonwealth University)

Read More