Luca Massarelli (Sapienza University of Rome), Giuseppe A. Di Luna (CINI - National Laboratory of Cybersecurity), Fabio Petroni (Independent Researcher), Leonardo Querzoni (Sapienza University of Rome), Roberto Baldoni (Italian Presidency of Ministry Council)

In this paper we investigate the use of graph embedding networks, with unsupervised features learning, as neural architecture to learn over binary functions.

We propose several ways of automatically extract features from the control flow graph (CFG) and we use the structure2vec graph embedding techniques to translate a CFG to a vectors of real numbers. We train and test our proposed architectures on two different binary analysis tasks: binary similarity, and, compiler provenance. We show that the unsupervised extraction of features improves the accuracy on the above tasks, when compared with embedding vectors obtained from a CFG annotated with manually engineered features (i.e., ACFG proposed in [39]).

We additionally compare the results of graph embedding networks based techniques with a recent architecture that do not make use of the structural information given by the CFG, and we observe similar performances. We formulate a possible explanation of this phenomenon and we conclude identifying important open challenges.

View More Papers

A Heuristic Approach to Detect Opaque Predicates that Disrupt...

Yu-Jye Tung (University of California, Irvine), Ian Harris (University of California Irvine)

Read More

Rethink Custom Transformers for Binary Analysis

Heng Yin, Professor, Department of Computer Science and Engineering, University of California, Riverside

Read More

Beyond the Bytes: Understanding the Limitations of Intrinsic Binary...

Peter Lafosse (Owner and Co-Founder of Vector 35 Inc.)

Read More

Target-Centric Firmware Rehosting with Penguin

Andrew Fasano, Zachary Estrada, Luke Craig, Ben Levy, Jordan McLeod, Jacques Becker, Elysia Witham, Cole DiLorenzo, Caden Kline, Ali Bobi (MIT Lincoln Laboratory), Dinko Dermendzhiev (Georgia Institute of Technology), Tim Leek (MIT Lincoln Laboratory), William Robertson (Northeastern University)

Read More