Anup K Ghosh

One of the hardest challenges for companies and their officers is determining how much to spend on cybersecurity and the appropriate allocation of those resources. Security “investments” are a cost on the ledger, and as such, companies do not want to spend more on security than they have to. The question most boards have is “how much security is enough?” and “how good is our security program?” Most CISOs and SOC teams have a hard time answering these questions for a lack of data and framework to measure risk and compare with other similar sized companies. This paper presents a data-driven practical approach to assessing and scoring cybersecurity risk that can be used to allocate resources efficiently a nd mitigate cybersecurity risk in areas that need it the most. We combine both static and dynamic measures of risk to give a composite score more indicative of cybersecurity risk over static measures alone.

View More Papers

PISE: Protocol Inference using Symbolic Execution and Automata Learning

Ron Marcovich, Orna Grumberg, Gabi Nakibly (Technion, Israel Institute of Technology)

Read More

FUZZILLI: Fuzzing for JavaScript JIT Compiler Vulnerabilities

Samuel Groß (Google), Simon Koch (TU Braunschweig), Lukas Bernhard (Ruhr-University Bochum), Thorsten Holz (CISPA Helmholtz Center for Information Security), Martin Johns (TU Braunschweig)

Read More

LOKI: State-Aware Fuzzing Framework for the Implementation of Blockchain...

Fuchen Ma (Tsinghua University), Yuanliang Chen (Tsinghua University), Meng Ren (Tsinghua University), Yuanhang Zhou (Tsinghua University), Yu Jiang (Tsinghua University), Ting Chen (University of Electronic Science and Technology of China), Huizhong Li (WeBank), Jiaguang Sun (School of Software, Tsinghua University)

Read More