Frederick Rawlins, Richard Baker and Ivan Martinovic (University of Oxford)

Presenter: Frederick Rawlins

Satellites in Geostationary Orbit (GEO) provide a number of commercial, government, and military services around the world, offering everything from surveillance and monitoring to video calls and internet access. However a dramatic lowering of the cost-per-kilogram to space has led to a recent explosion in real and planned constellations in Low Earth Orbit (LEO) of smaller satellites.

These constellations are managed remotely and it is important to consider a scenario in which an attacker gains control over the constituent satellites. In this paper we aim to understand what damage this attacker could cause, using the satellites to generate interference.

To ground our analysis, we simulate a number of existing and planned LEO constellations against an example GEO constellation, and evaluate the relative effectiveness of each. Our model shows that with conservative power estimates, both current and planned constellations could disrupt GEO satellite services at every groundstation considered, albeit with effectiveness varying considerably between locations.

We analyse different patterns of interference, how they reflect the structures of the constellations creating them, and how effective they might be against a number of legitimate services. We find that real-time usage (e.g. calls, streaming) would be most affected, with 3 constellation designs able to generate thousands of outages of 30 seconds or longer over the course of the day across all groundstations.

View More Papers

COSPAS Search and Rescue Satellite Uplink: A MAC-Based Security...

Syed Khandker (New York University Abu Dhabi), Krzysztof Jurczok (Amateur Radio Operator), Christina Pöpper (New York University Abu Dhabi)

Read More

An Exploratory study of Malicious Link Posting on Social...

Muhammad Hassan, Mahnoor Jameel, Masooda Bashir (University of Illinois at Urbana Champaign)

Read More

WIP: Towards the Practicality of the Adversarial Attack on...

Chen Ma (Xi'an Jiaotong University), Ningfei Wang (University of California, Irvine), Qi Alfred Chen (University of California, Irvine), Chao Shen (Xi'an Jiaotong University)

Read More

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better...

Siyuan Cheng (Purdue University), Guanhong Tao (Purdue University), Yingqi Liu (Purdue University), Shengwei An (Purdue University), Xiangzhe Xu (Purdue University), Shiwei Feng (Purdue University), Guangyu Shen (Purdue University), Kaiyuan Zhang (Purdue University), Qiuling Xu (Purdue University), Shiqing Ma (Rutgers University), Xiangyu Zhang (Purdue University)

Read More