Frederick Rawlins, Richard Baker and Ivan Martinovic (University of Oxford)

Presenter: Frederick Rawlins

Satellites in Geostationary Orbit (GEO) provide a number of commercial, government, and military services around the world, offering everything from surveillance and monitoring to video calls and internet access. However a dramatic lowering of the cost-per-kilogram to space has led to a recent explosion in real and planned constellations in Low Earth Orbit (LEO) of smaller satellites.

These constellations are managed remotely and it is important to consider a scenario in which an attacker gains control over the constituent satellites. In this paper we aim to understand what damage this attacker could cause, using the satellites to generate interference.

To ground our analysis, we simulate a number of existing and planned LEO constellations against an example GEO constellation, and evaluate the relative effectiveness of each. Our model shows that with conservative power estimates, both current and planned constellations could disrupt GEO satellite services at every groundstation considered, albeit with effectiveness varying considerably between locations.

We analyse different patterns of interference, how they reflect the structures of the constellations creating them, and how effective they might be against a number of legitimate services. We find that real-time usage (e.g. calls, streaming) would be most affected, with 3 constellation designs able to generate thousands of outages of 30 seconds or longer over the course of the day across all groundstations.

View More Papers

OBSan: An Out-Of-Bound Sanitizer to Harden DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

The Power of Bamboo: On the Post-Compromise Security for...

Tianyang Chen (Huazhong University of Science and Technology), Peng Xu (Huazhong University of Science and Technology), Stjepan Picek (Radboud University), Bo Luo (The University of Kansas), Willy Susilo (University of Wollongong), Hai Jin (Huazhong University of Science and Technology), Kaitai Liang (TU Delft)

Read More

Paralyzing Drones via EMI Signal Injection on Sensory Communication...

Joonha Jang (KAIST), ManGi Cho (KAIST), Jaehoon Kim (KAIST), Dongkwan Kim (Samsung SDS), Yongdae Kim (KAIST)

Read More

Position Paper: Space System Threat Models Must Account for...

Benjamin Cyr and Yan Long (University of Michigan), Takeshi Sugawara (The University of Electro-Communications), Kevin Fu (Northeastern University)

Read More