Frank Lee and Gregory Falco (Johns Hopkins University)

Presenter: Frank Lee

End-of-life (EOL) satellites are space assets that have completed their primary mission. Due to their loss in commercial or scientific priority, EOL satellites are often left in place by operators for an extended period, instead of being decommissioned in a timely manner to free up high-value orbits. This period of inactivity exposes EOL satellites to a lower level of operator vigilance, and therefore, higher level of cyberattack risk. With the recent growth in space activities, this paper estimates there will be up to 5,000 inactive satellites in low Earth orbit (LEO) within 5 years, magnifying the space cyber risks and resulting space sustainability challenges. To bolster space cybersecurity, the authors illuminate unique attack vectors against EOL satellites, as well as policy and technical mitigation measures. When part of a constellation, the vulnerability of an EOL satellite has even bigger implications, where a threat actor may use the secondary asset to target primary assets. Ultimately, the active management of EOL satellites is significant for a secure and sustainable LEO infrastructure.

View More Papers

Lightning Community Shout-Outs to:

(1) Jonathan Petit, Secure ML Performance Benchmark (Qualcomm) (2) David Balenson, The Road to Future Automotive Research Datasets: PIVOT Project and Community Workshop (USC Information Sciences Institute) (3) Jeremy Daily, CyberX Challenge Events (Colorado State University) (4) Mert D. Pesé, DETROIT: Data Collection, Translation and Sharing for Rapid Vehicular App Development (Clemson University) (5) Ning…

Read More

How to Count Bots in Longitudinal Datasets of IP...

Leon Böck (Technische Universität Darmstadt), Dave Levin (University of Maryland), Ramakrishna Padmanabhan (CAIDA), Christian Doerr (Hasso Plattner Institute), Max Mühlhäuser (Technical University of Darmstadt)

Read More

Guess Which Car Type I Am Driving: Information Leak...

Dongyao Chen (Shanghai Jiao Tong University), Mert D. Pesé (Clemson University), Kang G. Shin (University of Michigan, Ann Arbor)

Read More

OptRand: Optimistically Responsive Reconfigurable Distributed Randomness

Adithya Bhat (Purdue University), Nibesh Shrestha (Rochester Institute of Technology), Aniket Kate (Purdue University), Kartik Nayak (Duke University)

Read More