Kimberly Redmond (University of South Carolina), Lannan Luo (University of South Carolina), Qiang Zeng (University of South Carolina)

Given a closed-source program, such as most of proprietary software and viruses, binary code analysis is indispensable for many tasks, such as code plagiarism detection and malware analysis. Today, source code is very often compiled for various architectures, making cross-architecture binary code analysis increasingly important. A binary, after being disassembled, is expressed in an assembly language. Thus, recent work starts exploring Natural Language Processing (NLP) inspired binary code analysis. In NLP, words are usually represented in high-dimensional vectors (i.e., embeddings) to facilitate further processing, which is one of the most common and critical steps in many NLP tasks. We regard instructions as words in NLP-inspired binary code analysis, and aim to represent instructions as embeddings as well.

To facilitate cross-architecture binary code analysis, our goal is that similar instructions, regardless of their architectures, have embeddings close to each other. To this end, we propose a joint learning approach to generating instruction embeddings that capture not only the semantics of instructions within an architecture, but also their semantic relationships across architectures. To the best of our knowledge, this is the first work on building cross-architecture instruction embedding model. As a showcase, we apply the model to resolving one of the most fundamental problems for binary code similarity comparison—semantics-based basic block comparison, and the solution outperforms the code statistics based approach. It demonstrates that it is promising to apply the model to other cross-architecture binary code analysis tasks.

View More Papers

Trim My View: An LLM-Based Code Query System for...

Sima Arasteh (University of Southern California), Pegah Jandaghi, Nicolaas Weideman (University of Southern California/Information Sciences Institute), Dennis Perepech, Mukund Raghothaman (University of Southern California), Christophe Hauser (Dartmouth College), Luis Garcia (University of Utah Kahlert School of Computing)

Read More

GTrans: Graph Transformer-Based Obfuscation-resilient Binary Code Similarity Detection

Yun Zhang (Hunan University), Yuling Liu (Hunan University), Ge Cheng (Xiangtan University), Bo Ou (Hunan University)

Read More

B2R2: Building an Efficient Front-End for Binary Analysis

Minkyu Jung (KAIST), Soomin Kim (KAIST), HyungSeok Han (KAIST), Jaeseung Choi (KAIST), Sang Kil Cha (KAIST)

Read More

CLIK on PLCs! Attacking Control Logic with Decompilation and...

Sushma Kalle (University of New Orleans), Nehal Ameen (University of New Orleans), Hyunguk Yoo (University of New Orleans), Irfan Ahmed (Virginia Commonwealth University)

Read More