Romain Malmain (EURECOM), Andrea Fioraldi (EURECOM), Aurelien Francillon (EURECOM)

Despite QEMU’s popularity for binary-only fuzzing, the fuzzing community faces challenges like the proliferation of hard-to-maintain QEMU forks and the lack of an up-to-date, flexible framework well-integrated with advanced fuzzing engines. This leads to a gap in emulation-based fuzzing tools that are both maintainable and fuzzing-oriented.

To cope with that, we present LIBAFL QEMU, a library written in Rust that provides an interface for fuzzing-based emulation by wrapping around QEMU, in both system and user mode. We focus on addressing the limitations of existing QEMU forks used in fuzzing by offering a well-integrated, maintainable and up-to-date solution. In this paper, we detail the design, implementation, and practical challenges of LIBAFL QEMU, including its APIs and fuzzing capabilities and we showcase the library’s use in two case studies: fuzzing an Android library and a Windows kernel driver.

We compare the fuzzers written for these 2 targets with the state-of-the-art, AFL++ qemu mode for the Android library, and KAFL for the Windows driver. For the former, we show that LIBAFL QEMU outperforms AFL++ qemu mode both in terms of speed and coverage. For the latter, despite KAFL being built above hardware-based virtualization instead of emulation, we show we can run complex targets such as Windows and still reach comparable performance, with an overhead expected by a software emulator.

View More Papers

Towards Precise Reporting of Cryptographic Misuses

Yikang Chen (The Chinese University of Hong Kong), Yibo Liu (Arizona State University), Ka Lok Wu (The Chinese University of Hong Kong), Duc V Le (Visa Research), Sze Yiu Chau (The Chinese University of Hong Kong)

Read More

RCABench: Open Benchmarking Platform for Root Cause Analysis

Keisuke Nishimura, Yuichi Sugiyama, Yuki Koike, Masaya Motoda, Tomoya Kitagawa, Toshiki Takatera, Yuma Kurogome (Ricerca Security, Inc.)

Read More

Blaze: A Framework for Interprocedural Binary Analysis

Matthew Revelle, Matt Parker, Kevin Orr (Kudu Dynamics)

Read More

PISE: Protocol Inference using Symbolic Execution and Automata Learning

Ron Marcovich, Orna Grumberg, Gabi Nakibly (Technion, Israel Institute of Technology)

Read More