Romain Malmain (EURECOM), Andrea Fioraldi (EURECOM), Aurelien Francillon (EURECOM)

Despite QEMU’s popularity for binary-only fuzzing, the fuzzing community faces challenges like the proliferation of hard-to-maintain QEMU forks and the lack of an up-to-date, flexible framework well-integrated with advanced fuzzing engines. This leads to a gap in emulation-based fuzzing tools that are both maintainable and fuzzing-oriented.

To cope with that, we present LIBAFL QEMU, a library written in Rust that provides an interface for fuzzing-based emulation by wrapping around QEMU, in both system and user mode. We focus on addressing the limitations of existing QEMU forks used in fuzzing by offering a well-integrated, maintainable and up-to-date solution. In this paper, we detail the design, implementation, and practical challenges of LIBAFL QEMU, including its APIs and fuzzing capabilities and we showcase the library’s use in two case studies: fuzzing an Android library and a Windows kernel driver.

We compare the fuzzers written for these 2 targets with the state-of-the-art, AFL++ qemu mode for the Android library, and KAFL for the Windows driver. For the former, we show that LIBAFL QEMU outperforms AFL++ qemu mode both in terms of speed and coverage. For the latter, despite KAFL being built above hardware-based virtualization instead of emulation, we show we can run complex targets such as Windows and still reach comparable performance, with an overhead expected by a software emulator.

View More Papers

Heterogeneous Graph Pre-training Based Model for Secure and Efficient...

Xurui Li (Fudan University), Xin Shan (Bank of Shanghai), Wenhao Yin (Shanghai Saic Finance Co., Ltd)

Read More

EM Eye: Characterizing Electromagnetic Side-channel Eavesdropping on Embedded Cameras

Yan Long (University of Michigan), Qinhong Jiang (Zhejiang University), Chen Yan (Zhejiang University), Tobias Alam (University of Michigan), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University), Kevin Fu (Northeastern University)

Read More

HistCAN: A real-time CAN IDS with enhanced historical traffic...

Shuguo Zhuo, Nuo Li, Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

Read More

Parrot-Trained Adversarial Examples: Pushing the Practicality of Black-Box Audio...

Rui Duan (University of South Florida), Zhe Qu (Central South University), Leah Ding (American University), Yao Liu (University of South Florida), Zhuo Lu (University of South Florida)

Read More