Arnau Gàmez-Montolio (City, University of London; Activision Research), Enric Florit (Universitat de Barcelona), Martin Brain (City, University of London), Jacob M. Howe (City, University of London)

Polynomials over fixed-width binary numbers (bytes, Z/2 wZ, bit-vectors, etc.) appear widely in computer science including obfuscation and reverse engineering, program analysis, automated theorem proving, verification, errorcorrecting codes and cryptography. As some fixed-width binary numbers do not have reciprocals, these polynomials behave differently to those normally studied in mathematics. In particular, polynomial equality is harder to determine; polynomials having different coefficients is not sufficient to show they always compute different values. Determining polynomial equality is a fundamental building block for most symbolic algorithms. For larger widths or multivariate polynomials, checking all inputs is computationally infeasible. This paper presents a study of the mathematical structure of null polynomials (those that evaluate to 0 for all inputs) and uses this to develop efficient algorithms to reduce polynomials to a normalized form. Polynomials in such normalized form are equal if and only if their coefficients are equal. This is a key building block for more mathematically sophisticated approaches to a wide range of fundamental problems.

View More Papers

Target-Centric Firmware Rehosting with Penguin

Andrew Fasano, Zachary Estrada, Luke Craig, Ben Levy, Jordan McLeod, Jacques Becker, Elysia Witham, Cole DiLorenzo, Caden Kline, Ali Bobi (MIT Lincoln Laboratory), Dinko Dermendzhiev (Georgia Institute of Technology), Tim Leek (MIT Lincoln Laboratory), William Robertson (Northeastern University)

Read More

From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive...

Shahriar Ebrahimi (IDEAS-NCBR), Parisa Hassanizadeh (IDEAS-NCBR)

Read More

On the Security of Satellite-Based Air Traffic Control

Tobias Lüscher (ETH Zurich), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Vincent Lenders (Cyber-Defence Campus, armasuisse S+T)

Read More

From Hardware Fingerprint to Access Token: Enhancing the Authentication...

Yue Xiao (Wuhan University), Yi He (Tsinghua University), Xiaoli Zhang (Zhejiang University of Technology), Qian Wang (Wuhan University), Renjie Xie (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Qi Li (Tsinghua University)

Read More