Prabhjot Singh (University of Waterloo), Diogo Barradas (University of Waterloo), Tariq Elahi (University of Edinburgh), Noura Limam (University of Waterloo)

Despite the implementation of encrypted channels, such as those offered by anonymity networks like Tor, network adversaries have demonstrated the ability to compromise users’ browsing privacy through website fingerprinting attacks. This paper studies the susceptibility of Tor users to website fingerprinting when data is exchanged over low Earth orbit (LEO) satellite Internet links. Specifically, we design an experimental testbed that incorporates a Starlink satellite Internet connection, allowing us to collect a dataset for evaluating the success of website fingerprinting attacks in satellite environments compared to conventional fiber connections. Our findings suggest that Tor traffic transmitted via Starlink is as vulnerable to fingerprinting attacks as traffic over fiber links, despite the distinct networking characteristics of Starlink connections in contrast to fiber.

View More Papers

Transforming Raw Authentication Logs into Interpretable Events

Seth Hastings, Tyler Moore, Corey Bolger, Philip Schumway (University of Tulsa)

Read More

SOCs lead AI adoption: Transitioning Lessons to the C-Suite

Eric Dull, Drew Walsh, Scott Riede (Deloitte and Touche)

Read More

Experimental Analyses of the Physical Surveillance Risks in Client-Side...

Ashish Hooda (University of Wisconsin-Madison), Andrey Labunets (UC San Diego), Tadayoshi Kohno (University of Washington), Earlence Fernandes (UC San Diego)

Read More

BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking

Hossam ElAtali (University of Waterloo), Lachlan J. Gunn (Aalto University), Hans Liljestrand (University of Waterloo), N. Asokan (University of Waterloo, Aalto University)

Read More