Prabhjot Singh (University of Waterloo), Diogo Barradas (University of Waterloo), Tariq Elahi (University of Edinburgh), Noura Limam (University of Waterloo)

Despite the implementation of encrypted channels, such as those offered by anonymity networks like Tor, network adversaries have demonstrated the ability to compromise users’ browsing privacy through website fingerprinting attacks. This paper studies the susceptibility of Tor users to website fingerprinting when data is exchanged over low Earth orbit (LEO) satellite Internet links. Specifically, we design an experimental testbed that incorporates a Starlink satellite Internet connection, allowing us to collect a dataset for evaluating the success of website fingerprinting attacks in satellite environments compared to conventional fiber connections. Our findings suggest that Tor traffic transmitted via Starlink is as vulnerable to fingerprinting attacks as traffic over fiber links, despite the distinct networking characteristics of Starlink connections in contrast to fiber.

View More Papers

You Can Use But Cannot Recognize: Preserving Visual Privacy...

Qiushi Li (Tsinghua University), Yan Zhang (Tsinghua University), Ju Ren (Tsinghua University), Qi Li (Tsinghua University), Yaoxue Zhang (Tsinghua University)

Read More

More Lightweight, yet Stronger: Revisiting OSCORE’s Replay Protection

Konrad-Felix Krentz (Uppsala University), Thiemo Voigt (Uppsala University, RISE Computer Science)

Read More

Binary Code Patching: An Ancient Art Refined for the...

Dr. Barton P. Miller (Vilas Distinguished Achievement Professor at The University of Wisconsin-Madison)

Read More

BGP-iSec: Improved Security of Internet Routing Against Post-ROV Attacks

Cameron Morris (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut), Samuel Secondo (University of Connecticut)

Read More