Chenxu Wang (Southern University of Science and Technology (SUSTech) and The Hong Kong Polytechnic University), Fengwei Zhang (Southern University of Science and Technology (SUSTech)), Yunjie Deng (Southern University of Science and Technology (SUSTech)), Kevin Leach (Vanderbilt University), Jiannong Cao (The Hong Kong Polytechnic University), Zhenyu Ning (Hunan University), Shoumeng Yan (Ant Group), Zhengyu He (Ant Group)

Confidential computing is an emerging technique that provides users and third-party developers with an isolated and transparent execution environment. To support this technique, Arm introduced the Confidential Computing Architecture (CCA), which creates multiple isolated address spaces, known as realms, to ensure data confidentiality and integrity in security-sensitive tasks. Arm recently proposed the concept of confidential computing on GPU hardware, which is widely used in general-purpose, high-performance, and artificial intelligence computing scenarios. However, hardware and firmware supporting confidential GPU workloads remain unavailable. Existing studies leverage Trusted Execution Environments (TEEs) to secure GPU computing on Arm- or Intel-based platforms, but they are not suitable for CCA's realm-style architecture, such as using incompatible hardware or introducing a large trusted computing base (TCB). Therefore, there is a need to complement existing Arm CCA capabilities with GPU acceleration.

To address this challenge, we present CAGE to support confidential GPU computing for Arm CCA. By leveraging the existing security features in Arm CCA, CAGE ensures data security during confidential computing on unified-memory GPUs, the mainstream accelerators in Arm devices. To adapt the GPU workflow to CCA's realm-style architecture, CAGE proposes a novel shadow task mechanism to manage confidential GPU applications flexibly. Additionally, CAGE leverages the memory isolation mechanism in Arm CCA to protect data confidentiality and integrity from the strong adversary. Based on this, CAGE also optimizes security operations in memory isolation to mitigate performance overhead. Without hardware changes, our approach uses the generic hardware security primitives in Arm CCA to defend against a privileged adversary. We present two prototypes to verify CAGE's functionality and evaluate performance, respectively. Results show that CAGE effectively provides GPU support for Arm CCA with an average of 2.45% performance overhead.

View More Papers

Information Based Heavy Hitters for Real-Time DNS Data Exfiltration...

Yarin Ozery (Ben-Gurion University of the Negev, Akamai Technologies inc.), Asaf Nadler (Ben-Gurion University of the Negev), Asaf Shabtai (Ben-Gurion University of the Negev)

Read More

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More

WIP: Auditing Artist Style Pirate in Text-to-image Generation Models

Linkang Du (Zhejiang University), Zheng Zhu (Zhejiang University), Min Chen (CISPA Helmholtz Center for Information Security), Shouling Ji (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (Stanford University)

Read More

Binary Code Patching: An Ancient Art Refined for the...

Dr. Barton P. Miller (Vilas Distinguished Achievement Professor at The University of Wisconsin-Madison)

Read More