Chenxu Wang (Southern University of Science and Technology (SUSTech) and The Hong Kong Polytechnic University), Fengwei Zhang (Southern University of Science and Technology (SUSTech)), Yunjie Deng (Southern University of Science and Technology (SUSTech)), Kevin Leach (Vanderbilt University), Jiannong Cao (The Hong Kong Polytechnic University), Zhenyu Ning (Hunan University), Shoumeng Yan (Ant Group), Zhengyu He (Ant…

Confidential computing is an emerging technique that provides users and third-party developers with an isolated and transparent execution environment. To support this technique, Arm introduced the Confidential Computing Architecture (CCA), which creates multiple isolated address spaces, known as realms, to ensure data confidentiality and integrity in security-sensitive tasks. Arm recently proposed the concept of confidential computing on GPU hardware, which is widely used in general-purpose, high-performance, and artificial intelligence computing scenarios. However, hardware and firmware supporting confidential GPU workloads remain unavailable. Existing studies leverage Trusted Execution Environments (TEEs) to secure GPU computing on Arm- or Intel-based platforms, but they are not suitable for CCA's realm-style architecture, such as using incompatible hardware or introducing a large trusted computing base (TCB). Therefore, there is a need to complement existing Arm CCA capabilities with GPU acceleration.

To address this challenge, we present CAGE to support confidential GPU computing for Arm CCA. By leveraging the existing security features in Arm CCA, CAGE ensures data security during confidential computing on unified-memory GPUs, the mainstream accelerators in Arm devices. To adapt the GPU workflow to CCA's realm-style architecture, CAGE proposes a novel shadow task mechanism to manage confidential GPU applications flexibly. Additionally, CAGE leverages the memory isolation mechanism in Arm CCA to protect data confidentiality and integrity from the strong adversary. Based on this, CAGE also optimizes security operations in memory isolation to mitigate performance overhead. Without hardware changes, our approach uses the generic hardware security primitives in Arm CCA to defend against a privileged adversary. We present two prototypes to verify CAGE's functionality and evaluate performance, respectively. Results show that CAGE effectively provides GPU support for Arm CCA with an average of 2.45% performance overhead.

View More Papers

Eavesdropping on Controller Acoustic Emanation for Keystroke Inference Attack...

Shiqing Luo (George Mason University), Anh Nguyen (George Mason University), Hafsa Farooq (Georgia State University), Kun Sun (George Mason University), Zhisheng Yan (George Mason University)

Read More

DynPRE: Protocol Reverse Engineering via Dynamic Inference

Zhengxiong Luo (Tsinghua University), Kai Liang (Central South University), Yanyang Zhao (Tsinghua University), Feifan Wu (Tsinghua University), Junze Yu (Tsinghua University), Heyuan Shi (Central South University), Yu Jiang (Tsinghua University)

Read More

Leaking the Privacy of Groups and More: Understanding Privacy...

Jiangrong Wu (Sun Yat-sen University), Yuhong Nan (Sun Yat-sen University), Luyi Xing (Indiana University Bloomington), Jiatao Cheng (Sun Yat-sen University), Zimin Lin (Alibaba Group), Zibin Zheng (Sun Yat-sen University), Min Yang (Fudan University)

Read More

MOCK: Optimizing Kernel Fuzzing Mutation with Context-aware Dependency

Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Read More