Alexandra Weber (Telespazio Germany GmbH), Peter Franke (Telespazio Germany GmbH)

Space missions increasingly rely on Artificial Intelligence (AI) for a variety of tasks, ranging from planning and monitoring of mission operations, to processing and analysis of mission data, to assistant systems like, e.g., a bot that interactively supports astronauts on the International Space Station. In general, the use of AI brings about a multitude of security threats. In the space domain, initial attacks have already been demonstrated, including, e.g., the Firefly attack that manipulates automatic forest-fire detection using sensor spoofing. In this article, we provide an initial analysis of specific security risks that are critical for the use of AI in space and we discuss corresponding security controls and mitigations. We argue that rigorous risk analyses with a focus on AI-specific threats will be needed to ensure the reliability of future AI applications in the space domain.

View More Papers

NODLINK: An Online System for Fine-Grained APT Attack Detection...

Shaofei Li (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Feng Dong (Huazhong University of Science and Technology), Xusheng Xiao (Arizona State University), Haoyu Wang (Huazhong University of Science and Technology), Fei Shao (Case Western Reserve University), Jiedong Chen (Sangfor Technologies Inc.), Yao Guo (Key Laboratory of High-Confidence Software Technologies…

Read More

Automatic Policy Synthesis and Enforcement for Protecting Untrusted Deserialization

Quan Zhang (Tsinghua University), Yiwen Xu (Tsinghua University), Zijing Yin (Tsinghua University), Chijin Zhou (Tsinghua University), Yu Jiang (Tsinghua University)

Read More

CamPro: Camera-based Anti-Facial Recognition

Wenjun Zhu (Zhejiang University), Yuan Sun (Zhejiang University), Jiani Liu (Zhejiang University), Yushi Cheng (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive...

Shahriar Ebrahimi (IDEAS-NCBR), Parisa Hassanizadeh (IDEAS-NCBR)

Read More