Nina Shamsi (Northeastern University), Kaeshav Chandrasekar, Yan Long, Christopher Limbach (University of Michigan), Keith Rebello (Boeing), Kevin Fu (Northeastern University)

Control or disablement of computer vision-assisted autonomous vehicles via acoustic interference is an open problem in vehicle cybersecurity research. This work explores a new threat model in this problem space: acoustic interference via high-speed, pulsed lasers to non-destructively affect drone sensors. Initial experiments verified the feasibility of laser-induced acoustic wave generation at resonant frequencies of MEMS gyroscope sensors. Acoustic waves generated by a lab-scale laser produced a 300-fold noise floor modification in commercial off-of-the-shelf (COTS) gyroscope sensor readings. Computer vision functionalities of drones often depend on such vulnerable sensors, and can be a target of this new threat model because of camera motion blurs caused by acoustic interference. The effect of laser-induced acoustics in object detection datasets was simulated by extracting blur kernels from drone images captured under different conditions of acoustic interference, including speaker-generated sound to emulate higher intensity lasers, and evaluated using state-of-theart object detection models. The results show an average of 41.1% decrease in mean average precision for YOLOv8 across two datasets, and suggest an inverse relationship between an object detection model’s mean average precision and acoustic intensity. Object detection models with at least 60M parameters appear more resilient against laser-induced acoustic interference. Initial characterizations of laser-induced acoustic interference reveal future potential threat models affecting sensors and downstream software systems of autonomous vehicles.

View More Papers

Unus pro omnibus: Multi-Client Searchable Encryption via Access Control

Jiafan Wang (Data61, CSIRO), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More

Architecting Trigger-Action Platforms for Security, Performance and Functionality

Deepak Sirone Jegan (University of Wisconsin-Madison), Michael Swift (University of Wisconsin-Madison), Earlence Fernandes (University of California San Diego)

Read More

Exploiting Sequence Number Leakage: TCP Hijacking in NAT-Enabled Wi-Fi...

Yuxiang Yang (Tsinghua University), Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ke Xu (Tsinghua University)

Read More

GhostType: The Limits of Using Contactless Electromagnetic Interference to...

Qinhong Jiang (Zhejiang University), Yanze Ren (Zhejiang University), Yan Long (University of Michigan), Chen Yan (Zhejiang University), Yumai Sun (University of Michigan), Xiaoyu Ji (Zhejiang University), Kevin Fu (Northeastern University), Wenyuan Xu (Zhejiang University)

Read More