Evan Allen (Virginia Tech), Zeb Bowden (Virginia Tech Transportation Institute), J. Scot Ransbottom (Virginia Tech)

Attackers have found numerous vulnerabilities in the Electronic Control Units (ECUs) of modern vehicles, enabling them to stop the car, control its brakes, and take other potentially disruptive actions. Many of these attacks were possible because the vehicles had insecure In-Vehicle Networks (IVNs), where ECUs could send any message to each other. For example, an attacker who compromised an infotainment ECU might be able to send a braking message to a wheel. In this work, we introduce a scheme based on distributed firewalls to block these unauthorized messages according to a set “security policy” defining what transmissions each ECU should be able to send and receive. We leverage the topology of new switched, zonal networks to authenticate messages without cryptography, using Ternary Content Addressable Memory (TCAMs) to enforce the policy at wire-speed. Crucially, our approach minimizes the security burden on edge ECUs and places control in a set of hardened zonal gateways. Through an OMNeT++ simulation of a zonal IVN, we demonstrate that our scheme has much lower overhead than modern cryptography-based approaches and allows for realtime, low-latency (​<0.1 ms) traffic.

View More Papers

WIP: Savvy: Trustworthy Autonomous Vehicles Architecture

Ali Shoker, Rehana Yasmin, Paulo Esteves-Verissimo (Resilient Computing & Cybersecurity Center (RC3), KAUST)

Read More

FirmLine: a Generic Pipeline for Large-Scale Analysis of Non-Linux...

Alexander Balgavy (Independent), Marius Muench (University of Birmingham)

Read More

From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive...

Shahriar Ebrahimi (IDEAS-NCBR), Parisa Hassanizadeh (IDEAS-NCBR)

Read More

Benchmarking transferable adversarial attacks

Zhibo Jin (The University of Sydney), Jiayu Zhang (Suzhou Yierqi), Zhiyu Zhu, Huaming Chen (The University of Sydney)

Read More